First-year lectures in Statistics: BMathSci(Adv)

Professor Patty Solomon

School of Mathematical Sciences University of Adelaide

First-year lectures in Statistics: BMathSci(Adv)

- The purpose of these three (now <u>two</u>) lectures is to introduce you to some real statistical applications.
- I'll do this by talking about
 Institutional comparisons

2. Statistics and people smuggling

Topic I: Institutional comparisons

- Comparing school performance.
- Comparing university performance.
- Comparing hospital and intensive care unit performance.

Comparing the performance of Australian and New Zealand intensive care units

ICU bedside area, the Queen Elizabeth Hospital, Adelaide

My clinical colleague: Dr John Moran, TQEH

My ex-postdoc: Dr Jessica Kasza

Comparing institutional performance is

- a statistically challenging problem
- usually done **badly**
- usually done using league tables.

TEAM

A world plagued by league tables

LONDON 2012 MEDAL TALLY

	RANK	COUNTRY	0	\bigcirc	0	TOTAL
	1	United States of America	46	29	29	104
	2	China China	38	27	23	88
	3	Great Britain	29	17	19	65
	4	Russia	24	26	32	82
-	5	South Korea	13	8	7	28
_	6	Germany	11	19	14	44
	7	France	11	11	12	34
	8	Italy	8	9	11	28
	9	Hungary	8	4	5	17
	10	🔛 Australia	7	16	12	35
	11	Japan	7	14	17	38
	12	Kazakhstan	7	1	5	13
	13	Netherlands	6	6	8	20
	14	Ukraine	6	5	9	20
	15	New Zealand	6	2	5	13
	16	돈 Cuba	5	3	6	14

Olympic Venue Find

Explore all of the London OI where the Aussies will be connew Olympic park to Wimble London is serving up a treat

Did

and the second second							
		34 Russia	82	143,056,383	1,744,590		
	X +1	35 Moldova	2	3,559,500	1,779,750		
	Q +1	36 Serbia	4	7,120,666	1,780,166		
	+1	37 Finland	3	5,407,040	1,802,346		
	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	38 Germany	44	81,831,000	1,859,7	1	
		39 Puerto Rico	2	3,725,789	1,862	1	L
		40 France	34	65,350,000	1,92	7.	
	+1	41 Canada	18	34,771,400	1,93	- ·	
		42 Switzerland	4	7,870,100	1,96		
	$\underline{\mathbf{X}}$ +1 $\underline{\mathbf{X}}$ +1	43 Botswana	1	2,038,228	2,03		6
	Q +1	44 Romania	9	19,042,936	2,115,881		ø
	Q +1	45 Italy	28	60,776,531	2,170,590		
		46 Ukraine	20	45,644,419	2,282,220	500,000	5,
		47 Singapore	2	5,183,700	2,591,850		
		48 Spain	17	46,196,278	2,717,428		
		49 United States	104	313,382,000	3,013,288		
		50 Japan	38	127,650,000	3,359,210		
		51 Kenya	11	38,610,097	3,510,008		
		52 Tunisia	3	10,673,800	3,557,933		
		53 Kuwait	1	3,582,054	3,582,054		
		54 Belgium	3	10,951,266	3,650,422		
ommen		55 Bulgaria	2	7,364,570	3,682,285		
16 pec		56 Poland	10	38,501,000	3,850,100		
	http://www.medalspercapita.con	n/#medals-per-capita:2	2012	- Canton and			

*

University league tables are popular ...

Times Higher Education 100 Under 50 rankings Click heading to sort table. Download this data

100 Under 50 rank	World University Rankings 2011-2012 position	Institution	Country	Teaching	Research	Citations	Overall score
1	53	Pohang University of Science and Technology	Republic of Korea	65.9	66.8	92.3	71.8
2	46	École Polytechnique Fédérale de Lausanne	Switzerland	55.9	40.9	95.3	66.2
3	62	Hong Kong University of Science and Technology	Hong Kong	51.4	62.6	71.0	63.0
4	86	University of California, Irvine	US	42.2	51.5	93.5	60.0
5		Korea Advanced Institute of Science and Technology	Republic of Korea	71.3	61.3	47.1	58.6
6	84	Université Pierre et Marie Curie	France	61.6	26.3	81.1	56.3
7	110	University of California, Santa Cruz	US	31.6	45.4	99.9	56.0
8		University of York	UK	43.1	50.1	71.6	55.7
9		Lancaster University	UK	38.2	43.2	75.4	53.6

Even when large samples lead to reasonable precision, there are still problems with the concept of league tables.

Friday, 1 November 13

Trouble with league tables

- Unless all universities are performing precisely
 the same, one of them will be top (or bottom) in
 the ranking, and not simply due to chance.
- * In a highly competitive environment, e.g., surgical performance or universities, there may be nothing wrong with coming last.
- * The **'bottom'** of the ranking may be the **'middle'** of the distribution, so again there may be nothing wrong with coming last.
- ***** Not helpful in distinguishing unusual performance.

So let's add confidence intervals: caterpillar plot

Fig. 1. Effectiveness scores for 64 schools after adjusting for intake achievement

Goldstein and Healy, JRSS A, 1995

Still not helpful in picking out unusual schools.

Nor does it answer the question ...

Is the worst ranked school worse than we would expect the worst school to be, where the expectation is based on a null hypothesis of no difference between schools?

We also want an answer to the same question, replacing worst with best.

Better to use a funnel plot

Surgeon-specific risk-adjusted mortality rates

H.E. Jones et al. / Journal of Clinical Epidemiology 61 (2008) 232-240

Better to use False Discovery Rate thresholds.

Adjusting for multiple comparisons

Bonferroni method:

Suppose we compare 1000 null hypotheses H_0 , $H_{01}, H_{02}, \ldots, H_{0,1000}$ not necessarily independent and observe corresponding *p*-values $p_1, p_2, \ldots, p_{1000}$

The Bonferroni method controls the Family-Wise Error Rate (FWER), which is the probability of of falsely rejecting even one null hypothesis, to be $\alpha \leq 0.05$.

Compare the observed *p*-values to the nominal threshold

This controls the probability of making even one mistake, and can be at the cost of making a true discovery.

 $\alpha' = \frac{0.05}{1000}$

Adjusting for multiple comparisons

False discovery rate:

Suppose *m* independent null hypotheses are tested simultaneously, of which *R* are declared to be statistically significant and *V* are false discoveries. Then the false discovery rate (FDR) is

$$E\left(\frac{V}{R}\right)$$

where V/R is defined to be zero when R = 0.

The *q*-value is the FDR analogue of the *p*-value.

It is defined as the maximum FDR for which the test may be called significant.

Our aim is to identify intensive care units (ICUs) with unusual performance, using

The Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database (APD)

Statistically, the approach is one of *"horses for courses"*

The ANZICS APD

- collects voluntary patient-level admissions data from ICUs in OZ and NZ;
- 1995-2010: over 1 million individual patient admissions. In 2010, more than 80% of eligible ICUs (n=157) participated;
- data collected on: age, sex, patient severity score APACHE III, patient diagnostic category, surgical and ventilation status, hospital level, geographical locality, and much more;
- APACHE = Acute Physiology And Chronic Health Evaluation score (3rd revision); recorded as worst during first 24 hours post admission.
- We use **in-hospital mortality** to compare ICU performance.

ANZICS APD: patient characteristics in 2009 and 2010

minimum 150 admissions per ICU per year*

Age in years	61.65 (18.20)				
APACHE III score	51.28 (27.23)		Total number of patients = 163795		
ICU mortality (%)	6.51				
Hospital mortality (%)	10.21				
2009-2010 patient volume	1194 (1153)				
	n (%)	Hospital		n (%)	Hospital
		mortality (%)			mortality (%)
Ventilation			ICU source		
Not ventilated	94802 (57.88)	6.32	No transfer	151185 (92.30)	9.69
Ventilated	68993 (42.12)	15.56	Hospital transfer	12610 (7.70)	16.48
Gender			ICU hospital level		
Male	95128 (58.08)	10.31	Rural	21348 (13.03)	10.07
Female	68667 (41.92)	10.08	Metropolitan	29294 (17.88)	13.17
Patient surgical status			Tertiary	70587 (43.09)	12.74
Non-surgical	96364 (58.83)	13.86	Private	42566 (25.99)	4.06
Elective surgical	47847 (29.21)	2.36	ICU location		
Emergency surgical	19584 (11.96)	11.45	NT	2153 (1.31)	10.03
Patient diagnostic category			NSW	51046 (31.16)	10.53
Cardiovascular	40230 (24.56)	15.81	ACT	4014 (2.45)	9.52
Gastrointestinal	28639 (17.48)	8.92	SA	12772 (7.80)	13.71
Metabolic	11424 (6.97)	3.16	VIC	41426 (25.29)	10.28
Neurologic	18216 (11.12)	12.56	WA	3279 (2.00)	11.04
Respiratory	25057 (15.30)	13.94	NZ	9164 (5.60)	13.43
Trauma	9030 (5.51)	8.34	QLD	37337 (22.80)	7.63
Renal/Genitourinary	8612 (5.26)	4.78	TAS	2604 (1.59)	11.56
Hematological	22587 (13.79)	2.24			

The ANZICS APD

Data structure is hierarchical: variability between ICUs variability between patients within ICUs

A two-level hierarchical model for mortality

Let
$$Y_{ij} = \begin{cases} 1 \text{ if patient } i \text{ in ICU } j \text{ dies in hospital} \\ 0 \text{ otherwise} \end{cases}$$

where $j = 1, ..., m, i = 1, ..., n_j, \quad Y_{ij} \sim \text{Bernoulli}(p_{ij})$

and
$$\log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{x_{ij}} + U_j, \quad U_j \sim N(0, \sigma^2)$$

$$\log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{x_{ij}} + U_j, \quad U_j \sim N(0, \sigma^2)$$

- is a random intercept logistic regression model.
- it accommodates fact that responses within ICUs are correlated and provides "shrinkage estimates".
- Random intercepts model unknown differences between ICUs.
- This is an example of a random effects model; also known as hierarchical models, nonlinear mixed models, multilevel models, variance components models,
- We could fit a **fixed effects** logistic regression model, where each ICU has its own (fixed) intercept. What would this model look like?

We need a key performance indicator

- A KPI is a summary statistic intended to measure the 'quality' or 'effectiveness' of an ICU's functioning.
- Whilst death could be considered the ultimate 'performance', how much should we attribute to the hospital?
- We want to compare ICUs, distinguishing 'usual' from 'unusual' performance.
- We use the log Standardized Mortality Ratio (SMR) as our KPI: $-n_i$

$$\log SMR_{j} = \log \frac{\sum_{i=1}^{n_{j}} Y_{ij}}{\sum_{i=1}^{n_{j}} p_{ij}} = \log(O_{j}) - \log(E_{j})$$

How do we identify unusual performance?*

- <u>Approach I:</u> Fit a random effects distribution that encompasses all the variation between ICUs. Then identify extreme ICUs = 'outlier accommodation'.**
- <u>Approach II</u>: Fit a random effects distribution to the usual ICUs to obtain a null model. Then identify divergent ICUs = 'outlier detection'.

We take a classical <u>Approach II</u>, which involves 3 Stages.

* Ohlssen et al, JRSS A, 2007

**Barnett & Lewis, 1978

Stage I: find a good risk-adjusted mortality model for all 2009-2010 data

A (two-level) random coefficient logistic regression model:

 $Y_{ij}|\boldsymbol{x}_{ij}, \boldsymbol{U}_j \sim \text{Bernoulli}(p_{ij})$

where

$$\log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \beta_0 + \beta_1 A P_{ij} + \sum_{k=2}^{110} \beta_k x_{kij} + U_{0j} + U_{1j} A P_{ij}$$

with

$$\begin{pmatrix} U_{0j} \\ U_{1j} \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{I}^{2} & \sigma_{I,AP} \\ \sigma_{I,AP} & \sigma_{AP}^{2} \end{pmatrix} \right)$$

 σ_I^2 , σ_{AP}^2 are components of variance, and $\sigma_{I,AP}$ is the component of covariance.

Stage I: find a good risk-adjusted mortality model for all 2009-2010 data

- For model building, the data were split randomly into an 80% training dataset to fit the model, and a 20% test dataset to estimate the prediction error (PE).
- This approach gives a valid estimate of the PE.
- In the statistics you have met so far, the training dataset = the test dataset, which gives an optimistic estimate of the true PE.
- This is because you are using the same data to fit the model and to test it.
- When not enough data available to split, use cross-validation.

Stage I: find a good risk-adjusted mortality model for all 2009-2010 data

- The **model fitting** was done using maximum likelihood.
- Log likelihoods approximated by numerical integration: 7-point adaptive Gaussian quadrature in Stata v12.1, xtmelogit command.
- R can't cope with the large dataset.
- We started with a lot more than 112 fixed explanatory variables in the model.
- For model selection, variables dropped stepwise with p<0.10.
- Also used information criteria (AIC for nested models, BIC), global measures of goodness-of-fit, and binned residual plots.

Variable	Stage 1 model				
	Log odds	<i>p</i> -value	95%	Ó CI	
Age (per 10 year increase)	0.2352	< 0.0001	0.2165	0.2540	
Age squared	0.0134	< 0.0001	0.0074	0.0194	
APACHE III score (per 10 units increase)	0.5922	< 0.0001	0.5662	0.6181	
APACHE III score squared	-0.0099	< 0.0001	-0.0123	-0.0075	
Age \times APACHE III score	-0.0208	< 0.0001	-0.0255	-0.0160	
Gender (baseline male)	-0.0392	0.0519	-0.0787	0.0003	
Patient Category (baseline cardiovas)					
Gastrointestinal	-0.1604	0.0088	-0.2803	-0.0404	
Metabolic	-1.3120	< 0.0001	-1.5375	-1.0866	
Neurologic	0.5154	< 0.0001	0.3798	0.6511	
Respiratory	0.5605	< 0.0001	0.4691	0.6518	
Trauma	-0.6107	< 0.0001	-0.8525	-0.3688	
Renal/ genitourinary	-0.5210	< 0.0001	-0.7300	-0.3121	
Hematologic	-1.4325	< 0.0001	-1.6054	-1.2596	
Patient surgical status (baseline non-surgical)					
Elective surgery	-1.4800	< 0.0001	-1.6290	-1.3310	
Emergency surgery	-0.4517	< 0.0001	-0.6173	-0.2862	
Ventilation	0.4132	< 0.0001	0.3144	0.5120	
ICU source	-0.1172	0.0043	-0.1977	-0.0367	
Patient category × APACHE III score					

Stage I model checking: binned residual plot

ICU-level: 115 bins

Stage I model checking: binned residual plot Patient-level: 404 bins

Stage I model checking: binned residual plot Patient-level: 404 bins

Correct adjustment for casemix is difficult. But we have a good **empirical** model for prediction.

Stage I model checking: gradient function

$$\Delta(G, \boldsymbol{U}) = \frac{1}{m} \sum_{j} \frac{f_j(\boldsymbol{y}_j | \boldsymbol{U})}{f_j(\boldsymbol{y}_j | G)}$$

Verbeke & Molenberghs Biostatistics 2013

"Degrees of freedom" ??

Stage I: identify potentially unusual ICUs (using approximate cross-validation)

For each ICU j and for k = 1, ..., 5000

- simulate U_{j}^{k} from fitted model, calculate \tilde{p}_{ij}^{k}
- simulate outcome for each patient:

 $Y_{ij}^k \sim \text{Bernoulli}(\tilde{p}_{ij}^k)$

• count number of deaths:
$$E_j^k = \sum_{i=1}^{n_j} Y_{ij}^k$$
.

Calculate approximate *p*-value for each ICU:

$$p_j^{approx} = \frac{1}{5000} \sum_{k=1}^{5000} I_{E_j^k < O_j}$$

This measures how well the estimated model predicts O for each ICU.

Stage I: here are the potentially unusual ICUs

p < 0.05 over-performing

p > 0.95 under-performing

ICU identifier	Hospital Level	<i>p</i> -value	
100	Private	0.0166	
57	Private	0.0182	
48	Rural	0.0202	
72	Rural	0.0220	
108	Private	0.0258	
49	Metropolitan	0.0290	
19	Private	0.0422	
45	Tertiary	0.0494	
93	Private	0.9658	
81	Private	0.9770	
44	Private	0.9874	
16	Private	0.9952	

(ICU identifiers are random numbers)

Kernel density plot of ICU volume 2009-2010

Large tick marks indicate volumes of 12 potentially unusual ICUs.

Stage 2: re-estimating the model

 $Y_{ij}|\boldsymbol{x}_{ij}, \boldsymbol{U}_j \sim \text{Bernoulli}(p_{ij}) \qquad \boldsymbol{U}_j \sim N_2(\boldsymbol{0}, \boldsymbol{\Sigma})$

Let $b_j = \begin{cases} 1 \text{ if ICU } j \text{ is identified as potentially unusual at Stage 1} \\ 0 \text{ otherwise.} \end{cases}$

Then

$$logit(p_{ij}) = b_j \beta_{0j} + b_j \beta_{1j} A P_{ij} + \sum_{k=2}^{110} \beta_k x_{kij}$$

+ $(1 - b_j)\beta_0 + (1 - b_j)\beta_1AP_{ij} + (1 - b_j)U_{0j} + (1 - b_j)U_{1j}AP_{ij}$

* Separate fixed intercepts and AP slopes are estimated for b_j=1.
* The null RE distribution is estimated using only "in control"
ICUs; the fixed effects are estimated using all ICUs.
(Langford & Lewis JRSS A, 1998)

Stages I and 2 variance components

Stage 1	$\hat{\sigma}^2$	SE
APACHE III	0.0000318	7.74×10^{-6}
Intercept	0.0542223	0.0115764
covariance	-0.0002500	0.0023700
Stage 2	$\hat{\sigma}^2$	SE
APACHE III	0.0000313	7.84×10^{-6}
Intercept	0.0271328	0.0073427
covariance	-0.0001876	0.0001879

Including all ICUs inflates the intercept variance estimates at Stage 1.

Random intercept models 'unknown ICU-level variables'.

Estimating the Key Performance Indicator from the Stage 2 model:

log Standardised Mortality Ratio

$$\log \text{SMR}_j = \log \frac{\sum_{i=1}^{n_j} Y_{ij}}{\sum_{i=1}^{n_j} p_{ij}} = \log(O_j) - \log(E_j)$$

where for each patient *i* in ICU *j*,

$$\hat{p}_{ij} = \frac{\exp\left(\hat{\beta}_{0} + \hat{\beta}_{1}AP_{ij} + \sum_{k=2}^{110} \hat{\beta}_{k}x_{kij} + \hat{U}_{0j} + \hat{U}_{1j}AP_{ij}\right)}{1 + \exp\left(\hat{\beta}_{0} + \hat{\beta}_{1}AP_{ij} + \sum_{k=2}^{110} \hat{\beta}_{k}x_{kij} + \hat{U}_{0j} + \hat{U}_{1j}AP_{ij}\right)}$$

For the potentially unusual ICUs, randomly select a null ICU k and use \hat{U}_k

Classical limits: no adjustment for multiple testing

Friday, 1 November 13

We can now answer the question

- is the observed worst ICU worse than would be expected if it had arisen from the true worst ICU, but still coming from the null random effects distribution?
- What about the **observed best** ICU?

Simulating the 'worst' predicted deaths distributions: ICU 16

Simulating the 'best' predicted deaths distributions: ICU 48

If you can hang on, go to the Northern Territory ...

What can we conclude about recent ICU performance in OZ and NZ?

- Four ICUs in private hospitals were identified with unusual performance in 2009 and 2010 by our three-stage analysis.
- Are the observed differences in mortality potentially performance related?
- Yes, and likely to be due to differences in ICU process of care.
- Three important messages are: comprehensive risk adjustment is essential, estimation of a null model is mandated and the statistical analysis is complicated!