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First-year lectures in Statistics:
BMathSci(Adv)

• The purpose of these three (now two) 
lectures is to introduce you to some real 
statistical applications.

• I’ll do this by talking about 

1. Institutional comparisons

2. Statistics and people smuggling
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Topic 1:
Institutional comparisons

• Comparing school performance.

• Comparing university performance.

• Comparing hospital and intensive 
care unit performance.
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Comparing the performance of Australian and 
New Zealand intensive care units

ICU bedside area, the Queen Elizabeth Hospital, Adelaide
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My clinical colleague:
Dr John Moran, TQEH

My ex-postdoc:

Dr Jessica Kasza
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• a statistically challenging problem

• usually done badly

• usually done using league tables.

Comparing institutional performance is
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A world plagued by league tables

19/09/12 1:44 PMLondon 2012 - Medal Tally

Page 1 of 3http://london2012.olympics.com.au/medal-tally/sortby/gold

Home Results Medal Tally

You can click on the column headings to change the sort order.

RANK COUNTRY TOTAL

1 United States of America 46 29 29 104

2 China 38 27 23 88

3 Great Britain 29 17 19 65

4 Russia 24 26 32 82

5 South Korea 13 8 7 28

6 Germany 11 19 14 44

7 France 11 11 12 34

8 Italy 8 9 11 28

9 Hungary 8 4 5 17

10 Australia 7 16 12 35

11 Japan 7 14 17 38

12 Kazakhstan 7 1 5 13

13 Netherlands 6 6 8 20

14 Ukraine 6 5 9 20

15 New Zealand 6 2 5 13

16 Cuba 5 3 6 14

17 Iran 4 5 3 12

18 Jamaica 4 4 4 12

19 Czech Republic 4 3 3 10

20 North Korea 4 0 2 6

21 Spain 3 10 4 17

22 Brazil 3 5 9 17

23 South Africa 3 2 1 6

24 Ethiopia 3 1 3 7

25 Croatia 3 1 2 6

26 Belarus 2 5 5 12

27 Romania 2 5 2 9

28 Kenya 2 4 5 11

29 Denmark 2 4 3 9

30 Azerbaijan 2 2 6 10

Explore all of the London Olympic venues
where the Aussies will be competing. From
new Olympic park to Wimbledon and Lord's,
London is serving up a treat for sports fans!

1988 in Calgary and Seoul saw the first Olympic
Games with computerised timekeeping, results
and analysis stored in databases for posterity.

 Olympic Venue Finder

Did You Know?

LONDON 2012 MEDAL TALLY

Search

News Athletes Sports Games Info Results Fun Stuff Education AOC
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Choose the right performance indicator ...
13/08/12 10:26 PMOlympic Medals per Capita

Page 1 of 2http://www.medalspercapita.com/#medals-per-capita:2012

Total Medals per Capita

Gold Medals per Capita

Weighted Medals per Capita

Total Medals by GDP

Total Medals

Gold Medals

Population

About

Updated August 12 3:12pm EDT

+402   Recommend this on
Google

TweetTweet 4,337

Like 18,716 people like this.

2012 London Rank Country Medals Population Population
per Medal

1 Grenada 1 110,821 110,821
2 Jamaica 12 2,705,827 225,485
3 Trinidad

and Tobago
4 1,317,714 329,428

4 New
Zealand

13 4,432,620 340,970

5 Bahamas 1 353,658 353,658
6 Slovenia 4 2,057,540 514,385
7 Mongolia 5 2,736,800 547,360
8 Hungary 17 9,962,000 586,000
9 Montenegro 1 620,029 620,029

10 Denmark 9 5,580,516 620,057
11 Georgia 7 4,469,200 638,457
12 Lithuania 5 3,192,800 638,560
13 Australia 35 22,880,619 653,731
14 Estonia 2 1,318,005 659,002
15 Croatia 6 4,290,612 715,102
16 Belarus 13 9,461,400 727,800
17 Cuba 14 11,241,161 802,940
18 Netherlands 20 16,731,770 836,588
19 Cyprus 1 838,897 838,897
20 Qatar 2 1,699,435 849,717
21 Azerbaijan 10 9,111,100 911,110
22 Ireland 5 4,588,252 917,650
23 Great

Britain
65 62,262,000 957,876

24 Latvia 2 2,070,371 1,035,185
25 Czech

Republic
10 10,504,203 1,050,420

26 Armenia 3 3,268,500 1,089,500
27 Sweden 8 9,490,683 1,186,335
28 Bahrain 1 1,234,571 1,234,571
29 Norway 4 5,005,700 1,251,425
30 Kazakhstan 13 16,718,000 1,286,000
31 Slovakia 4 5,445,324 1,361,331
32 Gabon 1 1,534,000 1,534,000

33 South
Korea

28 48,580,000 1,735,000

34 Russia 82 143,056,383 1,744,590
35 Moldova 2 3,559,500 1,779,750
36 Serbia 4 7,120,666 1,780,166
37 Finland 3 5,407,040 1,802,346
38 Germany 44 81,831,000 1,859,795
39 Puerto Rico 2 3,725,789 1,862,894
40 France 34 65,350,000 1,922,058
41 Canada 18 34,771,400 1,931,744
42 Switzerland 4 7,870,100 1,967,525
43 Botswana 1 2,038,228 2,038,228
44 Romania 9 19,042,936 2,115,881
45 Italy 28 60,776,531 2,170,590
46 Ukraine 20 45,644,419 2,282,220
47 Singapore 2 5,183,700 2,591,850
48 Spain 17 46,196,278 2,717,428
49 United

States
104 313,382,000 3,013,288

50 Japan 38 127,650,000 3,359,210
51 Kenya 11 38,610,097 3,510,008
52 Tunisia 3 10,673,800 3,557,933
53 Kuwait 1 3,582,054 3,582,054
54 Belgium 3 10,951,266 3,650,422
55 Bulgaria 2 7,364,570 3,682,285
56 Poland 10 38,501,000 3,850,100

World

Europe

Caribbean
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 University league tables are popular ...

12/06/12 12:45 PMWorld's top 100 universities under 50: ranked by Times Higher Education | News | guardian.co.uk

Page 2 of 7http://www.guardian.co.uk/news/datablog/2012/may/31/top-100-universities-under-50

So what do the rankings show us? Here is some of the key data from the rankings:

•30 different countries are represented in the top 100 – compared to just

26 in the top 200 of the Times Higher Education World University

Rankings

• 20 of the top 100 under 50 instutions are in the UK. Australia follows next

with 14

• 9 universities in the rankings are from the US. In the Times Higher

Education world top 100 universities ranked for reputation, the US

dominated taking 60% of the places on the list

• 1998 - the youngest university, Milan-Bicocca in Italy came 25th

• 5 - both Spain and Taiwan have five institutions on the rankings following

after the UK (20 institutions), Australia (14) and the US (9)

York University is the highest ranked UK institution on the list. Lancaster, Stirling and

Loughborough also make the list.

Thirteen indicators across 5 areas - research, teaching, knowledge transfer and

international activity - were taken into account. The full methodolgy can be found here.

Download the spreadsheet to see the individual scores by institution. The spreadsheet

also has details of the year the university was founded and the rankings in the THE

world top 100.

What can you do with the data?

Data summary

Times Higher Education 100 Under 50 rankings
Click heading to sort table. Download this data

100
Under
50
rank

World
University
Rankings
2011-2012
position

Institution Country Teaching Research Citations Overall
score

1 53 Pohang
University of
Science and
Technology

Republic of
Korea

65.9 66.8 92.3 71.8

2 46 École
Polytechnique
Fédérale de
Lausanne

Switzerland 55.9 40.9 95.3 66.2

3 62 Hong Kong
University of
Science and
Technology

Hong Kong 51.4 62.6 71.0 63.0

4 86 University of
California, Irvine

US 42.2 51.5 93.5 60.0

5  Korea Advanced
Institute of
Science and
Technology

Republic of
Korea

71.3 61.3 47.1 58.6

6 84 Université Pierre
et Marie Curie

France 61.6 26.3 81.1 56.3

7 110 University of
California, Santa
Cruz

US 31.6 45.4 99.9 56.0

8  University of York UK 43.1 50.1 71.6 55.7

9  Lancaster
University

UK 38.2 43.2 75.4 53.6

Even when large samples lead to reasonable precision, 
there are still problems with the concept of league tables.
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Trouble with league tables
Unless all universities are performing precisely 

the same, one of them will be top (or bottom) in 

the ranking, and not simply due to chance.

In a highly competitive environment, e.g., 

surgical performance or universities, there may be 
nothing wrong with coming last.

The ‘bottom’ of the ranking may be the ‘middle’ of 

the distribution, so again there may be nothing 
wrong with coming last.

Not helpful in distinguishing unusual performance.
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So let’s add confidence intervals:
caterpillar plot

Still not helpful in picking out unusual schools.

PRESENTATION OF COLLECTION OF MEANS 

School 

Fig. 1. Effectiveness scores for 64 schools after adjusting for intake achievement 

4. GENERALIZATIONS AND CONCLUSIONS 
The procedure can be generalized in several ways. 
First we can attach weights to each pairwise comparison, e.g. to reflect the 

probability of the comparison being used. In this case we require the average of 
wUyUto be a,with 

where the wU are the chosen weights. 
Secondly, individual users may wish to make several comparisons at a time. For 

example, a particular school may serve as a 'control' and others compared with 
it by using an appropriate multiple-comparisons procedure. Or we may wish to 
compare all pairs of a set of schools, chosen for example within a well-defined 
locality. For these situations a suitable multiple-comparisons procedure will be 
required. 

If we can anticipate where such uses will occur, or at least can obtain a reasonable 
estimate of the relevant probabilities of occurrence, then the above procedure can 
be modified readily. For any particular set of comparisons, the confidence intervals 
can be constructed for a chosen level p. We then carry out the weighted version 
of the procedure where the weights are chosen over the set of all defined com- 
parisons. A somewhat more complex search procedure can now be implemented. 

Although our discussion has been in terms of normality assumptions, it is readily 
adapted to other distributional assumptions, such as that of a t-distribution and 
to statistics other than the mean, e.g. to odds ratios resulting from linear-logistic 
models. 

REFERENCES 
Goldstein, H., Rasbash, J., Yang, M., Woodhouse, G., Pan, H., Nuttall, D. L. and Thomas, S. (1993) 

A multilevel analysis of school examination results. Oxf. Rev. Educ., 19, 425-433. 

Goldstein and Healy, JRSS A, 1995
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Nor does it answer the question ...
Is the worst ranked school worse 
than we would expect the worst 

school to be, where the expectation 
is based on a null hypothesis of no 

difference between schools?

We also want an answer to the same 
question, replacing worst with best.
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Better to use a funnel plot

hospital. Only one surgeon falls outside of the strict Bonfer-
roni prediction interval lines: this is L. Fuzesi, whose RAMR
over this time period is identified as potentially high.

See supplemental Appendix A for further details of these
two basic and related approaches to provider profiling (CIs
around observed rates and prediction limits around a target),
including the definition of suitable P-values. See supple-
mental Appendix B for an explanation of how to construct
the limit lines for the funnel plots. The appendices can be
found on the journal’s website at www.elsevier.com/
locate/jclinepi. Our own preference is for the prediction
limits formulation we adopt in this paper. We feel that this
approach is more easily interpretable and just as simple to
implement, and also provides a visual check of any rela-
tionship between volume and outcome [17]. Furthermore,
the funnel plot draws attention to potential extremes with-
out implying any rank order of providers and, unlike the
caterpillar plot, cannot be easily manipulated to do so.
The use of P-values also lends itself easily to the FDR mul-
tiplicity control procedure outlined in this paper.

In Section 3.1, the multiple testing problem is described
further. The motivation for the Bonferroni correction is ex-
plained and its conservative nature discussed, before we
proceed to demonstrate the FDR thresholding procedure
in subsequent sections.

3. Thresholding P-values

3.1. Multiple testing problem

Consider the possible outcomes from carrying out the
same hypothesis test on each of m providers, of which m0

(unknown) truly follows the null, and m15m!m0 are
the alternative (i.e., follow the alternative hypothesis, what-
ever that has been specified to be). A number of null hy-
potheses, S5 Fþ T, are rejected by the test, where F is
the number of ‘‘false positives’’ (number found significant
that are truly null), and T is the number of ‘‘true positives’’
(those found significant that are truly alternative). The out-
comes are then summarized as follows.

Called significant
(null rejected)

Called not significant
(null accepted) Total

Null true F m0! F m0

Alternative true T m1! T m1

Total S m! S m

Note that the situation is analogous to diagnostic testing,
where m individuals are tested for some disease. In that
case, S in the table would be the number of individuals test-
ing positive, m1 the number who truly have the disease and
so on.

Thresholding at P5 a corresponds to controlling the
expected proportion of all P-values that are falsely called
significant at level a, that is, ensuring that the expected
error rate E(F/m)< a. When testing many hypotheses
simultaneously, this is not sensible at the classical level
of a5 0.05 unless we are prepared to find many false
positives.

The motivation for the Bonferroni correction is that the
‘‘familywise error rate’’ (FWER), which is defined as
P(F> 1), is then strongly controlled at level a (the term
strong is used to indicate that the control is valid even when
there are many true positives). In other words, the
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Fig. 2. Funnel plots of (a) hospital-specific risk-adjusted mortality rates and (b) surgeon-specific risk-adjusted mortality rates. The circles denote the observed
RAMRs for each provider, while the solid horizontal lines represent the statewide mortality rate of 2.26. The dashed lines are prediction intervals around this
target using one-sided P-value thresholds.

235H.E. Jones et al. / Journal of Clinical Epidemiology 61 (2008) 232e240

Better to use False Discovery Rate thresholds.
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Adjusting for multiple comparisons
Bonferroni method:

4

Suppose we compare 1000 null hypotheses H0,

H01, H02, . . . , H0,1000

not necessarily independent and observe corresponding p-values

p1, p2, . . . , p1000

We can control the Type I error probability,

P(rejectH0|H0true)
at ↵ = 0.05 using the Bonferroni method by comparing the observed
p-values to the nominal threshold

↵0 = 0.05
1000

This controls the probability of making even one mistake,
and can be at the cost of making a true discovery.

4

Suppose we compare 1000 null hypotheses H0,

H01, H02, . . . , H0,1000

not necessarily independent and observe corresponding p-values

p1, p2, . . . , p1000

The Bonferroni method controls the Family-Wise Error Rate (FWER),
which is the probability of of falsely rejecting even one null hypothesis,
to be ↵  0.05.

Compare the observed p-values to the nominal threshold

↵0 = 0.05
1000

This controls the probability of making even one mistake,
and can be at the cost of making a true discovery.

Suppose m independent null hypotheses are tested simultaneously,
of which R are declared to be statistically significant and V are false discoveries.

Then the false discovery rate (FDR) is

E
✓V

R

◆

where V/R is defined to be zero when R = 0.

The q-value is the FDR analogue of the p-value.

It is defined as the maximum FDR for which the test may be called significant.
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Adjusting for multiple comparisons

False discovery rate:

4

Suppose we compare 1000 null hypotheses H0,

H01, H02, . . . , H0,1000

not necessarily independent and observe corresponding p-values

p1, p2, . . . , p1000

We can control the Type I error probability,

P(rejectH0|H0true)
at ↵ = 0.05 using the Bonferroni method by comparing the observed
p-values to the nominal threshold

↵0 = 0.05
1000

This controls the probability of making even one mistake,
and can be at the cost of making a true discovery.

Suppose m independent null hypotheses are tested simultaneously,
of which R are declared to be statistically significant and V are false discoveries.

Then the false discovery rate (FDR) is

E
✓V

R

◆

where V/R is defined to be zero when R = 0.

The q-value is the FDR analogue of the p-value.

It is defined as the maximum FDR for which the test may be called significant.
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This controls the probability of making even one mistake,
and can be at the cost of making a true discovery.

Suppose m independent null hypotheses are tested simultaneously,
of which R are declared to be statistically significant and V are false discoveries.

Then the false discovery rate (FDR) is

E
✓V

R

◆

where V/R is defined to be zero when R = 0.

The q-value is the FDR analogue of the p-value.

It is defined as the maximum FDR for which the test may be called significant.
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The Australian and New Zealand Intensive 
Care Society (ANZICS)

Adult Patient Database (APD)

Our aim is to identify intensive care units (ICUs) 
with unusual performance, using 

Statistically, the approach is one of 
“horses for courses”
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• collects voluntary patient-level admissions data from ICUs in OZ 
and NZ; 

• 1995-2010: over 1 million individual patient admissions.  In 2010, 
more than 80% of eligible ICUs (n=157) participated;

• data collected on: age, sex, patient severity score APACHE III, 
patient diagnostic category, surgical and ventilation status, hospital 
level, geographical locality, and much more;

• APACHE = Acute Physiology And Chronic Health 
Evaluation score (3rd revision); recorded as worst during 
first 24 hours post admission.

• We use in-hospital mortality to compare ICU performance.

                                                         

The ANZICS APD
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ANZICS APD: patient characteristics 
in 2009 and 2010Patient Characteristics

Age in years 61.65 (18.20)
APACHE III score 51.28 (27.23) Total number of patients = 163795
ICU mortality (%) 6.51
Hospital mortality (%) 10.21
2009-2010 patient volume 1194 (1153)

n (%) Hospital n (%) Hospital
mortality (%) mortality (%)

Ventilation ICU source
Not ventilated 94802 (57.88) 6.32 No transfer 151185 (92.30) 9.69
Ventilated 68993 (42.12) 15.56 Hospital transfer 12610 (7.70) 16.48
Gender ICU hospital level
Male 95128 (58.08) 10.31 Rural 21348 (13.03) 10.07
Female 68667 (41.92) 10.08 Metropolitan 29294 (17.88) 13.17
Patient surgical status Tertiary 70587 (43.09) 12.74
Non-surgical 96364 (58.83) 13.86 Private 42566 (25.99) 4.06
Elective surgical 47847 (29.21) 2.36 ICU location
Emergency surgical 19584 (11.96) 11.45 NT 2153 (1.31) 10.03
Patient diagnostic category NSW 51046 (31.16) 10.53
Cardiovascular 40230 (24.56) 15.81 ACT 4014 (2.45) 9.52
Gastrointestinal 28639 (17.48) 8.92 SA 12772 (7.80) 13.71
Metabolic 11424 (6.97) 3.16 VIC 41426 (25.29) 10.28
Neurologic 18216 (11.12) 12.56 WA 3279 (2.00) 11.04
Respiratory 25057 (15.30) 13.94 NZ 9164 (5.60) 13.43
Trauma 9030 (5.51) 8.34 QLD 37337 (22.80) 7.63
Renal/Genitourinary 8612 (5.26) 4.78 TAS 2604 (1.59) 11.56
Hematological 22587 (13.79) 2.24

Kasza, Moran, Solomon (ORS Seminar) Comparing ICU performance 16 / 46

 *115 ICUs

minimum 150 admissions per ICU per year*
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A two-level hierarchical model for mortality

The ANZICS APD

Data structure is hierarchical: 
variability between ICUs

variability between patients within ICUs

where

Let

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m
For example, let

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

where i = 1, . . . , nj , j = 1, . . . , m, Yij ⇠ Bernoulli(pij) and

log
pij

1 � pij
= �
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x

ij
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110X
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= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000
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Y k
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bj =
(

1 if ICU j is identified as potentially unusual at Stage 1

0 otherwise.
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• is a random intercept logistic regression model.

• it accommodates fact that responses within ICUs are 
correlated and provides “shrinkage estimates”.

• Random intercepts model unknown differences between 
ICUs.

• This is an example of a random effects model; also known as 
hierarchical models, nonlinear mixed models, multilevel models, 
variance components models, ... .

• We could fit a fixed effects logistic regression model, 
where each ICU has its own (fixed) intercept. What would 
this model look like?

Yij ⇠ Bernoulli(pij)

j = 1, . . . , m, i = 1, . . . , nj, Yij ⇠ Bernoulli(pij)
For example, let

Yij =
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+ (1 � bj)�0 + (1 � bj)�1APij + (1 � bj)U0j + (1 � bj)U1jAPij
1
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We need a key performance indicator

• A KPI is a summary statistic intended to measure the 
‘quality’ or ‘effectiveness’ of an ICU’s functioning.

• Whilst death could be considered the ultimate 
‘performance’, how much should we attribute to the 
hospital?

• We want to compare ICUs, distinguishing ‘usual’ from 
‘unusual’ performance.

• We use the log Standardized Mortality Ratio (SMR) as 
our KPI:

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , k

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

logit(pij) =

log SMRj = log

Pnj
i=1

Yij
Pnj

i=1

pij
= log(Oj) � log(Ej)

1
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How do we identify unusual performance?*

• Approach I: Fit a random effects distribution that 
encompasses all the variation between ICUs.  Then 
identify extreme ICUs = ‘outlier accommodation’.**

• Approach II: Fit a random effects distribution to the usual 
ICUs to obtain a null model.  Then identify divergent ICUs 
= ‘outlier detection’.

We take a classical Approach II, which involves 3 Stages.

**Barnett & Lewis, 1978* Ohlssen et al, JRSS A, 2007
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A (two-level) random coefficient logistic regression model:

Stage 1: find a good risk-adjusted mortality 
model for all 2009-2010 data

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , k

Yij =
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1 if patient i in ICU j dies in hospital

0 otherwise
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• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(p̃k

ij)

• count number of deaths: Ek
j =

Pnj
i=1 Y k
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Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1
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Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = bj�0j + bj�1jAPij +
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Suppose we compare 1000 null hypotheses H0,

H01, H02, . . . , H0,1000

not necessarily independent and observe corresponding p-values

p1, p2, . . . , p1000

We can control the Type I error probability,

P(rejectH0|H0true)
at ↵ = 0.05 using the Bonferroni method by comparing the observed
p-values to the nominal threshold

↵0 = 0.05
1000

This controls the probability of making even one mistake,
and can be at the cost of making a true discovery.

Suppose m independent null hypotheses are tested simultaneously,
of which R are declared to be statistically significant and V are false discoveries.

Then the false discovery rate (FDR) is

E
✓V

R

◆

where V/R is defined to be zero when R = 0.

The q-value is the FDR analogue of the p-value.

It is defined as the maximum FDR for which the test may be called significant.
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AP are components of variance, and �I,AP is the component of covariance.
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• For model building, the data were split randomly into 
an 80% training dataset to fit the model, and a 20% test 
dataset to estimate the prediction error (PE).

• This approach gives a valid estimate of the PE.

• In the statistics you have met so far, the training dataset = the 
test dataset, which gives an optimistic estimate of the true 
PE.

• This is because you are using the same data to fit the 
model and to test it.

• When not enough data available to split, use cross-validation.

Stage 1: find a good risk-adjusted mortality 
model for all 2009-2010 data
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• The model fitting was done using maximum likelihood.

• Log likelihoods approximated by numerical integration: 7-point 
adaptive Gaussian quadrature in Stata v12.1, xtmelogit 
command.

• R can’t cope with the large dataset.

• We started with a lot more than 112 fixed explanatory 
variables in the model.

• For model selection, variables dropped stepwise with 
p<0.10. 

• Also used information criteria (AIC for nested models, BIC), 
global measures of goodness-of-fit, and binned residual plots.

Stage 1: find a good risk-adjusted mortality 
model for all 2009-2010 data
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Table 2: Stage 1 and Stage 2 model parameter estimates.

All patients in the hematologic category were non-surgical, so

no parameters were estimated for the interaction of hemato-

logic with patient surgical status. Age and APACHE III have

been scaled so that coefficients correspond to 10-year/unit in-

creases. For example, for each 10 years that age increases,

the log odds of in-hospital mortality increases by 0.2352, and

for each 10 units that APACHE III increases, the log odds

of in-hospital mortality increases by 0.5922. For factor vari-

ables, the interpretation is the increase relative to the baseline

level. For example, being an elective surgical patient, versus

a non-surgical patient, decreases the log odds of in-hospital

mortality by 1.48.

Variable Stage 1 model Stage 2 model

Log odds p-value 95% CI Log odds p-value 95% CI

Age 0.2352 < 0.0001 0.2165 0.2540 0.2338 < 0.0001 0.2150 0.2525

Age squared 0.0134 < 0.0001 0.0074 0.0194 0.0132 < 0.0001 0.0072 0.0192

APACHE III score 0.5922 < 0.0001 0.5662 0.6181 0.5927 < 0.0001 0.5667 0.6190

APACHE III score squared -0.0099 < 0.0001 -0.0123 -0.0075 -0.0098 < 0.0001 -0.0122 -0.0074

Age × APACHE III score -0.0208 < 0.0001 -0.0255 -0.0160 -0.0205 < 0.0001 -0.0253 -0.0158

Gender -0.0392 0.0519 -0.0787 0.0003 -0.0386 0.0559 -0.0781 0.0010

Patient Category

Continued on next page

3

Table 2 – continued from previous page

Variable Stage 1 model Stage 2 model

Gastrointestinal -0.1604 0.0088 -0.2803 -0.0404 -0.1657 0.0068 -0.2857 -0.0458

Metabolic -1.3120 < 0.0001 -1.5375 -1.0866 -1.3118 < 0.0001 -1.5373 -1.0865

Neurologic 0.5154 < 0.0001 0.3798 0.6511 0.5173 < 0.0001 0.3818 0.6528

Respiratory 0.5605 < 0.0001 0.4691 0.6518 0.5574 < 0.0001 0.4661 0.6487

Trauma -0.6107 < 0.0001 -0.8525 -0.3688 -0.6081 < 0.0001 -0.8498 -0.3663

Renal/ genitourinary -0.5210 < 0.0001 -0.7300 -0.3121 -0.5250 < 0.0001 -0.7339 -0.3162

Hematologic -1.4325 < 0.0001 -1.6054 -1.2596 -1.4228 < 0.0001 -1.5958 -1.2498

Patient surgical status

Elective surgery -1.4800 < 0.0001 -1.6290 -1.3310 -1.4825 < 0.0001 -1.6316 -1.3334

Emergency surgery -0.4517 < 0.0001 -0.6173 -0.2862 -0.4459 < 0.0001 -0.6114 -0.2804

Ventilation 0.4132 < 0.0001 0.3144 0.5120 0.4115 < 0.0001 0.3129 0.5102

ICU source -0.1172 0.0043 -0.1977 -0.0367 -0.1163 0.0046 -0.1968 -0.0359

Patient category × APACHE III score

Gastrointestinal × APACHE III -0.0080 0.5436 -0.0338 0.0178 -0.0068 0.6068 -0.0326 0.0190

Metabolic × APACHE III 0.0540 0.0220 0.0078 0.1003 0.0532 0.0242 0.0069 0.0995

Neurologic × APACHE III -0.0651 < 0.0001 -0.0938 -0.0363 -0.0650 < 0.0001 -0.0938 -0.0363

Respiratory × APACHE III -0.0700 < 0.0001 -0.0931 -0.0469 -0.0694 < 0.0001 -0.0925 -0.0463

Trauma × APACHE III 0.1144 < 0.0001 0.0699 0.1588 0.1135 < 0.0001 0.0691 0.1580

Renal/ genitourinary × APACHE III -0.0744 0.0038 -0.1248 -0.0241 -0.0739 0.0040 -0.1242 -0.0235

Hematologic × APACHE III 0.1755 < 0.0001 0.1315 0.2194 0.1775 < 0.0001 0.1334 0.2215

Patient category × surgical status

Continued on next page

4

(per 10 year increase)

(per 10 units increase)

(baseline male)

(baseline non-surgical)

(baseline cardiovas)
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Stage 1 model checking: binned residual plot
ICU-level: 115 bins

Gelman & Hill, CUP 2007

 95% of binned residuals should lie within +/- 2 error 
bounds if model correctly specified.
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Patient-level: 404 bins

Stage 1 model checking: binned residual plot
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Correct adjustment for casemix is difficult.
But we have a good empirical model for prediction.

Stage 1 model checking: binned residual plot
Patient-level: 404 bins
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Stage 1 model checking: gradient function

Verbeke & Molenberghs Biostatistics 2013

3

S2010,j � S2009,j

S2010,j � E(S2010,j|S2009,j)

S2010 � E(S2010|S2009, S2008)

1/ŜE(S2010,j � S2009,j)

�2 > 0

�2 < 0

�0

�(G,U) = 1
m

X

j

fj(yj|U)
fj(yj|G)

3

S2010,j � S2009,j

S2010,j � E(S2010,j|S2009,j)

S2010 � E(S2010|S2009, S2008)

1/ŜE(S2010,j � S2009,j)

�2 > 0

�2 < 0

�0

�(G,U) = 1
m

X

j

fj(yj|U)
fj(yj|G)

�(Ĝ,U) =1

“Degrees of freedom” ??
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Stage I: identify potentially unusual ICUs 
(using approximate cross-validation)  

This measures how well the estimated model predicts O for each ICU.

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m
For example, let

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

where i = 1, . . . , nj , j = 1, . . . , m, Yij ⇠ Bernoulli(pij) and

log
pij

1 � pij
= �

T
x

ij

+ Uj, Uj ⇠ N(0, � 2)

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �0 + �1APij +
110X

k=2

�kxkij + U0j + U1jAPij

where

Uj ⇠ N2(0, ⌃)

log SMRj = log

Pnj
i=1 Yij

Pnj
i=1 pij

= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate Uk
j from fitted model, calculate p̃k

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(p̃k

ij)

• count number of deaths: Ek
j =

Pnj
i=1 Y k

ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1
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j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = bj�0j + bj�1jAPij +
110X

k=2

�kxkij

+ (1 � bj)�0 + (1 � bj)�1APij + (1 � bj)U0j + (1 � bj)U1jAPij

bj =
(

1 if ICU j is identified as potentially unusual at Stage 1

0 otherwise.

1

Yij ⇠ Bernoulli(pij)

j = 1, . . . , m, i = 1, . . . , nj, Yij ⇠ Bernoulli(pij)
For example, let

Yij =
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1 if patient i in ICU j dies in hospital

0 otherwise

where j = 1, . . . , m, i = 1, . . . , nj
Yij ⇠ Bernoulli(pij) and
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j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = bj�0j + bj�1jAPij +
110X

k=2

�kxkij

+ (1 � bj)�0 + (1 � bj)�1APij + (1 � bj)U0j + (1 � bj)U1jAPij
1
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Stage I: here are the potentially unusual ICUs

p < 0.05 over-performing p > 0.95 under-performing

Stage 1: potentially unusual ICUs

Table: An ICU with approximate p-value < 0.05 is potentially over-performing,
and an ICU with approximate p-value > 0.95 is potentially under-performing.

ICU identifier Hospital Level p-value
100 Private 0.0166
57 Private 0.0182
48 Rural 0.0202
72 Rural 0.0220

108 Private 0.0258
49 Metropolitan 0.0290
19 Private 0.0422
45 Tertiary 0.0494
93 Private 0.9658
81 Private 0.9770
44 Private 0.9874
16 Private 0.9952

Kasza, Moran, Solomon (ASC 2012) Comparing ICU performance 14 / 28(ICU identifiers are random numbers)
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Kernel density plot of ICU volume 2009-2010
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Large tick marks indicate volumes of 12 potentially unusual ICUs.
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Stage 2: re-estimating the model

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �
0

+ �
1

APij +
110X

k=2

�kxkij + U
0j + U

1jAPij

where

Uj ⇠ N
2

(0, ⌃)

log SMRj = log

Pnj
i=1

Yij
Pnj

i=1

pij
= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate U

k
j from fitted model, calculate pk

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(pk

ij)

• count number of deaths: Ek
j =

Pnj
i=1

Y k
ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = (1�bj)�
0

+bj�
0j +(1�bj)�

1

APij +bj�
1jAPij +

110X

h=2

�hxhij +(1�bj)U
0j +(1�bj)U

1jAPij

bj =
(

1 if ICU j was identified as potentially unusual at Stage 1

0 otherwise.

1

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �
0

+ �
1

APij +
110X

k=2

�kxkij + U
0j + U

1jAPij

where

Uj ⇠ N
2

(0, ⌃)

log SMRj = log

Pnj
i=1

Yij
Pnj

i=1

pij
= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate U

k
j from fitted model, calculate pk

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(pk

ij)

• count number of deaths: Ek
j =

Pnj
i=1

Y k
ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = (1�bj)�
0

+bj�
0j +(1�bj)�

1

APij +bj�
1jAPij +

110X

h=2

�hxhij +(1�bj)U
0j +(1�bj)U

1jAPij

bj =
(

1 if ICU j was identified as potentially unusual at Stage 1

0 otherwise.

1

* Separate fixed intercepts and AP slopes are estimated for b_j=1.
* The null RE distribution is estimated using only “in control”   
ICUs;  the fixed effects are estimated using all ICUs. 

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �
0

+ �
1

APij +
110X

k=2

�kxkij + U
0j + U

1jAPij

where

Uj ⇠ N
2

(0, ⌃)

log SMRj = log

Pnj
i=1

Yij
Pnj

i=1

pij
= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate U

k
j from fitted model, calculate pk

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(pk

ij)

• count number of deaths: Ek
j =

Pnj
i=1

Y k
ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = (1�bj)�
0

+bj�
0j +(1�bj)�

1

APij +bj�
1jAPij +

110X

h=2

�hxhij +(1�bj)U
0j +(1�bj)U

1jAPij

bj =
(

1 if ICU j is identified as potentially unusual at Stage 1

0 otherwise.

1

Let

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �
0

+ �
1

APij +
110X

k=2

�kxkij + U
0j + U

1jAPij

where

Uj ⇠ N
2

(0, ⌃)

log SMRj = log

Pnj
i=1

Yij
Pnj

i=1

pij
= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate U

k
j from fitted model, calculate pk

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(pk

ij)

• count number of deaths: Ek
j =

Pnj
i=1

Y k
ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = bj�
0j + bj�

1jAPij +
110X

k=2

�kxkij

+ (1 � bj)�
0

+ (1 � bj)�
1

APij + (1 � bj)U
0j + (1 � bj)U

1jAPij

bj =
(

1 if ICU j is identified as potentially unusual at Stage 1

0 otherwise.

1

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �
0

+ �
1

APij +
110X

k=2

�kxkij + U
0j + U

1jAPij

where

Uj ⇠ N
2

(0, ⌃)

log SMRj = log

Pnj
i=1

Yij
Pnj

i=1

pij
= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate U

k
j from fitted model, calculate pk

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(pk

ij)

• count number of deaths: Ek
j =

Pnj
i=1

Y k
ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = bj�
0j + bj�

1jAPij +
110X

k=2

�kxkij

+ (1 � bj)�
0

+ (1 � bj)�
1

APij + (1 � bj)U
0j + (1 � bj)U

1jAPij

bj =
(

1 if ICU j is identified as potentially unusual at Stage 1

0 otherwise.

1

Then

(Langford & Lewis JRSS A, 1998)
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Stages 1 and 2 variance components
2

Table 1. Estimates and standard errors of the random e�ect density parameters for the Stage
1 and Stage 2 models.

Stage 1 �̂2 SE
APACHE III 0.0000318 7.74⇥10�6

Intercept 0.0542223 0.0115764
covariance -0.0002500 0.0023700
Stage 2 �̂2 SE
APACHE III 0.0000313 7.84⇥10�6

Intercept 0.0271328 0.0073427
covariance -0.0001876 0.0001879

Stage 1 Stage 2
�̂2
AP 0.0000318 (7.74⇥10�6) 0.0000313 (7.84⇥10�6)

�̂2
I 0.0542223 (0.0115764) 0.0271328 (0.0073427)

�̂AP.I -0.0002500 (0.0023700) -0.0001876 (0.0001879)

Including all ICUs inflates the intercept variance estimates at 
Stage 1.

Random intercept models ‘unknown ICU-level variables’.
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Estimating the Key Performance Indicator 
from the Stage 2 model:

2

Table 1. Estimates and standard errors of the random e�ect density parameters for the Stage
1 and Stage 2 models.

Stage 1 ⇥̂2 SE
APACHE III 0.0000318 7.74⇥10�6

Intercept 0.0542223 0.0115764
covariance -0.0002500 0.0023700
Stage 2 ⇥̂2 SE
APACHE III 0.0000313 7.84⇥10�6

Intercept 0.0271328 0.0073427
covariance -0.0001876 0.0001879

Stage 1 Stage 2
⇥̂2
AP 0.0000318 (7.74⇥10�6) 0.0000313 (7.84⇥10�6)

⇥̂2
I 0.0542223 (0.0115764) 0.0271328 (0.0073427)

⇥̂AP.I -0.0002500 (0.0023700) -0.0001876 (0.0001879)

logit(pij) = �̂0 + �̂1APij +
110⌅

k=2

�̂kxkij +U0j +U1jAPij

= �̂
⇧
xij +U ⇧j(1, x1ij)⇧,

Uj ⌅ N(0, ⌃̂).

Estimate log-SMRs using the null model:

p̂ij =
exp

�
�̂0 + �̂1APij +

⇤110
k=2 �̂kxkij + Û0j + Û1jAPij

⇥

1+ exp
�
�̂0 + �̂1APij +

⇤110
k=2 �̂kxkij + Û0j + Û1jAPij

⇥

• For potentially unusual ICUs, randomly select a non-unusual ICU k, and use Ûk in the above
formula.

where for each patient i in ICU j,

For the potentially unusual ICUs, randomly select a null 
ICU   and use 

2

Table 1. Estimates and standard errors of the random e�ect density parameters for the Stage
1 and Stage 2 models.

Stage 1 ⇥̂2 SE
APACHE III 0.0000318 7.74⇥10�6

Intercept 0.0542223 0.0115764
covariance -0.0002500 0.0023700
Stage 2 ⇥̂2 SE
APACHE III 0.0000313 7.84⇥10�6

Intercept 0.0271328 0.0073427
covariance -0.0001876 0.0001879

Stage 1 Stage 2
⇥̂2
AP 0.0000318 (7.74⇥10�6) 0.0000313 (7.84⇥10�6)

⇥̂2
I 0.0542223 (0.0115764) 0.0271328 (0.0073427)

⇥̂AP.I -0.0002500 (0.0023700) -0.0001876 (0.0001879)

logit(pij) = �̂0 + �̂1APij +
110�

k=2

�̂kxkij +U0j +U1jAPij

= �̂
⇧
xij +U ⇧j(1, x1ij)⇧,

Uj ⌅ N(0, ⌃̂).

Estimate log-SMRs using the null model:

p̂ij =
exp

�
�̂0 + �̂1APij +

⌥110
k=2 �̂kxkij + Û0j + Û1jAPij

⇥

1+ exp
�
�̂0 + �̂1APij +

⌥110
k=2 �̂kxkij + Û0j + Û1jAPij

⇥

• For potentially unusual ICUs, randomly select a non-unusual ICU k, and use Ûk in the above
formula.

log SMRj = log

⇤
⇧
nj�

i=1

Yij

⌅
⌃� log

⇤
⇧
nj�

i=1

p̂ij

⌅
⌃

k

Ûk

2

Table 1. Estimates and standard errors of the random e�ect density parameters for the Stage

1 and Stage 2 models.

Stage 1 ⇥̂2 SE

APACHE III 0.0000318 7.74⇥10�6

Intercept 0.0542223 0.0115764

covariance -0.0002500 0.0023700

Stage 2 ⇥̂2 SE

APACHE III 0.0000313 7.84⇥10�6

Intercept 0.0271328 0.0073427

covariance -0.0001876 0.0001879

Stage 1 Stage 2

⇥̂2
AP 0.0000318 (7.74⇥10�6) 0.0000313 (7.84⇥10�6)

⇥̂2
I 0.0542223 (0.0115764) 0.0271328 (0.0073427)

⇥̂AP.I -0.0002500 (0.0023700) -0.0001876 (0.0001879)

logit(pij) = �̂0 + �̂1APij +
110�

k=2

�̂kxkij +U0j +U1jAPij

= �̂
⇧
xij +U⇧j(1, x1ij)⇧,

Uj ⌅ N(0, ⌃̂).

Estimate log-SMRs using the null model:

p̂ij =
exp

�
�̂0 + �̂1APij +

⌥110
k=2 �̂kxkij + Û0j + Û1jAPij

⇥

1+ exp
�
�̂0 + �̂1APij +

⌥110
k=2 �̂kxkij + Û0j + Û1jAPij

⇥

• For potentially unusual ICUs, randomly select a non-unusual ICU k, and use Ûk in the above

formula.

log SMRj = log

⇤
⇧
nj�

i=1

Yij

⌅
⌃� log

⇤
⇧
nj�

i=1

p̂ij

⌅
⌃

k

Ûk

log Standardised Mortality Ratio

Yij ⇠ Bernoulli(pij)

i = 1, . . . , nj , j = 1, . . . , m
For example, let

Yij =
(

1 if patient i in ICU j dies in hospital

0 otherwise

where i = 1, . . . , nj , j = 1, . . . , m, Yij ⇠ Bernoulli(pij) and

log
pij

1 � pij
= �

T
x

ij

+ Uj, Uj ⇠ N(0, � 2)

Yij|xij,Uj ⇠ Bernoulli(pij)

logit(pij) = �0 + �1APij +
110X

k=2

�kxkij + U0j + U1jAPij

where

Uj ⇠ N2(0, ⌃)

log SMRj = log

Pnj
i=1 Yij

Pnj
i=1 pij

= log(Oj) � log(Ej)

For each ICU j and for k = 1, . . . , 5000

• simulate Uk
j from fitted model, calculate p̃k

ij
• simulate outcome for each patient:

Y k
ij ⇠ Bernoulli(p̃k

ij)

• count number of deaths: Ek
j =

Pnj
i=1 Y k

ij .

Calculate approximate P -value for each ICU:

papprox
j = 1

5000

5000X

k=1

IEk
j <Oj

Yij|Xij,Uj ⇠ Bernoulli(Pij), Uj ⇠ N(0, ⌃)

logit(pij) = bj�0j + bj�1jAPij +
110X

k=2

�kxkij

+ (1 � bj)�0 + (1 � bj)�1APij + (1 � bj)U0j + (1 � bj)U1jAPij

bj =
(

1 if ICU j is identified as potentially unusual at Stage 1

0 otherwise.

1
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Stage 3: Funnel plot 2009 and 2010
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nef f
j =

P115
i=1 ni�̂ 2

i /115

�̂ 2
j

S2010,j � S2009,j

S2010,j � E(S2010,j|S2009,j)

S2010 � E(S2010|S2009, S2008)

1/ŜE(S2010,j � S2009,j)

�2 > 0

�2 < 0

�0

�(G,U) = 1
m

X

j

fj(yj|U)
fj(yj|G)

�(Ĝ,U)
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Stage 3: Funnel plot 2009 and 2010
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Stage 3: Funnel plot 2009 and 2010
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4 Private hospitals have higher than usual mortality: 
1 in Victoria, 3 in Queensland.
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Stage 3: Funnel plot 2009 and 2010
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We can now answer the question

• is the observed worst ICU worse than 
would be expected if it had arisen from the 
true worst ICU, but still coming from the 
null random effects distribution? 

• What about the observed best ICU?
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distributions: ICU 16
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If you can hang on, go to the Northern Territory ...
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What can we conclude about recent ICU 
performance in OZ and NZ?

• Four ICUs in private hospitals were identified with 
unusual performance in 2009 and 2010 by our three-
stage analysis.

• Are the observed differences in mortality potentially 
performance related? 

• Yes, and likely to be due to differences in ICU process 
of care.

• Three important messages are: comprehensive risk 
adjustment is essential, estimation of a null model is 
mandated and the statistical analysis is complicated!
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