The University of Adelaide
You are here » Home » News and events
Text size: S | M | L
Printer Friendly Version
November 2018
MTWTFSS
   1234
567891011
12131415161718
19202122232425
2627282930  
       

Events on Friday 17 August 2018

Min-max theory for hypersurfaces of prescribed mean curvature
11:10 Fri 17 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Jonathan Zhu :: Harvard University

We describe the construction of closed prescribed mean curvature (PMC) hypersurfaces using min-max methods. Our theory allows us to show the existence of closed PMC hypersurfaces in a given closed Riemannian manifold for a generic set of ambient prescription functions. This set includes, in particular, all constant functions as well as analytic functions if the manifold is real analytic. The described work is joint with Xin Zhou.
Tales of Multiple Regression: Informative Missingness, Recommender Systems, and R2-D2
15:10 Fri 17 Aug, 2018 :: Napier 208 :: Prof Howard Bondell :: University of Melbourne

In this talk, we briefly discuss two projects tangentially related under the umbrella of high-dimensional regression. The first part of the talk investigates informative missingness in the framework of recommender systems. In this setting, we envision a potential rating for every object-user pair. The goal of a recommender system is to predict the unobserved ratings in order to recommend an object that the user is likely to rate highly. A typically overlooked piece is that the combinations are not missing at random. For example, in movie ratings, a relationship between the user ratings and their viewing history is expected, as human nature dictates the user would seek out movies that they anticipate enjoying. We model this informative missingness, and place the recommender system in a shared-variable regression framework which can aid in prediction quality. The second part of the talk deals with a new class of prior distributions for shrinkage regularization in sparse linear regression, particularly the high dimensional case. Instead of placing a prior on the coefficients themselves, we place a prior on the regression R-squared. This is then distributed to the coefficients by decomposing it via a Dirichlet Distribution. We call the new prior R2-D2 in light of its R-Squared Dirichlet Decomposition. Compared to existing shrinkage priors, we show that the R2-D2 prior can simultaneously achieve both high prior concentration at zero, as well as heavier tails. These two properties combine to provide a higher degree of shrinkage on the irrelevant coefficients, along with less bias in estimation of the larger signals.
Recent news
Further enquiries

School of
Mathematical Sciences

Levels 6 and 7
Ingkarni Wardli Building
North Terrace Campus
The University of Adelaide
SA 5005 Australia


See location on map


General email
Head of School email
Telephone: +61 8 8313 5407
Facsimile: +61 8 8313 3696