The University of Adelaide
You are here » Home » News and events
Text size: S | M | L
Printer Friendly Version
July 2018

Events on Thursday 22 February 2018

A multiscale approximation of a Cahn-Larche system with phase separation on the microscale
15:10 Thu 22 Feb, 2018 :: Ingkarni Wardli 5.57 :: Ms Lisa Reischmann :: University of Augsberg

We consider the process of phase separation of a binary system under the influence of mechanical deformation and we derive a mathematical multiscale model, which describes the evolving microstructure taking into account the elastic properties of the involved materials. Motivated by phase-separation processes observed in lipid monolayers in film-balance experiments, the starting point of the model is the Cahn-Hilliard equation coupled with the equations of linear elasticity, the so-called Cahn-Larche system. Owing to the fact that the mechanical deformation takes place on a macrosopic scale whereas the phase separation happens on a microscopic level, a multiscale approach is imperative. We assume the pattern of the evolving microstructure to have an intrinsic length scale associated with it, which, after nondimensionalisation, leads to a scaled model involving a small parameter epsilon>0, which is suitable for periodic-homogenisation techniques. For the full nonlinear problem the so-called homogenised problem is then obtained by letting epsilon tend to zero using the method of asymptotic expansion. Furthermore, we present a linearised Cahn-Larche system and use the method of two-scale convergence to obtain the associated limit problem, which turns out to have the same structure as in the nonlinear case, in a mathematically rigorous way. Properties of the limit model will be discussed.
Recent news
Further enquiries

School of
Mathematical Sciences

Levels 6 and 7
Ingkarni Wardli Building
North Terrace Campus
The University of Adelaide
SA 5005 Australia

See location on map

General email
Head of School email
Telephone: +61 8 8313 5407
Facsimile: +61 8 8313 3696