1. Let $S \subset \mathbb{R}$ be a subset of the real numbers.
 (a) Define what it means for S to be bounded above by a number K.
 (b) If S is bounded above define the least upper bound $\sup(S)$.
 (c) For each of the following sets say whether they are bounded above or below or not bounded above or below. Give a bound if there is one. You are not required to prove anything.
 (i) $\left\{ \frac{1}{n^2} \mid n = 1, 2, 3, \ldots \right\}$
 (ii) $\left\{ x \mid x^2 - 9 < 0 \right\}$
 (iii) $\left\{ (x + 2002)^6 \mid x \in \mathbb{R} \right\}$
 (d) Find the sup or inf as indicated below. You are not required to prove anything.
 (i) $\inf\left\{ x \mid 0 < x < 2002 \right\}$
 (ii) $\inf\left\{ \frac{1}{n+2002} \mid n = 1, 2, 3, \ldots \right\}$
 (iii) $\sup\{\cos(x) \mid x \in \mathbb{R}\}$

2. (a) Define what it means for a sequence of real numbers $\left\{ x_n \right\}_{n=1}^{\infty}$ to have a limit $x \in \mathbb{R}$.
 (b) Assume that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} x_n = y$. Show that $x = y$.
 (c) Assume that $\lim_{n \to \infty} x_n = x$ and $\lambda \in \mathbb{R}$. If $z_n = \lambda x_n$ for all n show that $\lim_{n \to \infty} z_n = \lambda x$.

3. Let V be a real vector space.
 (a) Define what it means for a map $\| \| : V \to \mathbb{R}$ to be a norm on V.
 (b) Define $\| \| : \mathbb{R}^n \to \mathbb{R}$ by $\| x \|_1 = |x^1| + |x^2| + \cdots + |x^n|$ for $x = (x^1, x^2, \ldots, x^n) \in \mathbb{R}^n$. Show that $\| \|_1$ is a norm.
 (c) Consider the function $\| \| : \mathbb{R}^2 \to \mathbb{R}$ defined by $\| x \| = |x^1|$ where $x = (x^1, x^2)$. Is this a norm? Explain why or why not.

4. Let (X, d) be a metric space.
 (a) What is the definition of an open ball in X?
(b) What is the definition of an open set in X?
(c) Use your definitions in (a) and (b) to that if U_1 and U_2 are open sets so also is $U_1 \cap U_2$.

5. Let $T : X \to X$ be a function where (X, d) is a metric space.
(a) State what it means for T to have a fixed point.
(b) State what it means for T to be a contraction.
(c) State the Contraction Mapping Theorem concerning fixed points of contractions. (You do not need to define any terms.)
(d) Show that if $|\lambda| < 1$ then there is a unique continuous function f on $[0, 1]$ such that
\[f(x) = \sin(x) + \lambda \int_0^x f(y) \, dy. \]
You may assume that if g is a continuous function on $[0, 1]$ then $h(x) = \int_0^x g(y) \, dy$ is continuous and that $C[0, 1]$ is complete with the uniform or supremum norm $\|f\|_\infty = \sup\{|f(x)| \mid x \in [0, 1]\}$.

6. Let (X, d) be a metric space.
(a) Define an open cover of a subset $A \subseteq X$.
(b) Define what it means for a subset $A \subseteq X$ to be compact.
(c) Show that a subset of a metric space with the discrete metric
\[d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases} \]
which is compact is finite.

7. (a) State the Heine-Borel theorem that characterises the sequentially compact subsets of \mathbb{R}^n.
(b) Which of the following subsets are sequentially compact and which are not? Give reasons.
 (i) $B(x, 2002) \subseteq \mathbb{R}^n$
 (ii) $[0, 2002] \subseteq \mathbb{R}$
 (iii) $\{n^3 \mid n = 1, 2, \ldots\} \subseteq \mathbb{R}$
 (iv) $\{(x, y, z) \mid x^2 + y^2 + z^2 \leq 2002\} \subseteq \mathbb{R}^3$

8. Let (X, d) be a metric space.
(a) Show that if $x, y, z \in X$ then
\[|d(x, y) - d(x, z)| \leq d(y, z). \]
(b) Define what it means for a function $f : X \to \mathbb{R}$ to be continuous at a point $x \in X$.
(c) Fix a point $x_0 \in X$. Show that the function $f : X \to \mathbb{R}$, defined by $f(x) = d(x_0, x)$, is continuous at every point $x \in X$.

9. Let $(V, \| \|)$ be a normed vector space.
(a) If $T : V \to \mathbb{R}$ is linear, show that T is continuous if there is a constant $C > 0$ such that $|T(v)| \leq C\|v\|$ for all $v \in V$.
(b) If $T : V \to \mathbb{R}$ is linear and continuous how do we define $\|T\|$ the norm of T?
(c) Let $C[0, 1]$ be the space of all continuous functions on $[0, 1]$ with the uniform norm $\|f\|_\infty = \sup\{|f(x)| \mid x \in [0, 1]\}$. Find the norm of $T : C[0, 1] \to \mathbb{R}$ where $T(f) = \int_0^1 f(t) \, dt$.

10. Let $(H, \langle \, , \rangle)$ be a real Hilbert space.
(a) State the Cauchy-Schwarz inequality.
(b) If $v \in H$ define $L_v : H \to \mathbb{R}$ by $L_v(w) = \langle v, w \rangle$. Show that L_v is linear, continuous and find its norm.
(c) Show that $\ker(L_v) = \{w \in H \mid L_v(w) = 0\}$ is a closed subspace of H.
(d) Show that $\ker(L_v)^\perp = \{\lambda v \mid \lambda \in \mathbb{R}\}$.

Please turn over for page 3