Arrangement for tutorials in Week 9: As two of the tutes and one lecture are lost on the public holiday on the Monday 6th October I am cancelling the tutorial on the Friday 10th October. The lecture on the Thursday 9th will be held. As it happens I will also be unavailable that same week during my consulting hour. I will be available at other times, by email and I will be about for the two-week teaching break.

1. Define \(\cosh(z) = \frac{e^z + e^{-z}}{2} \) and \(\sinh(z) = \frac{e^z - e^{-z}}{2} \) and find formulae for them in terms of \(\sin, \cos, \sinh \) and \(\cosh \) of \(x \) and \(y \) where \(z = x + iy \).

2. Calculate \(a^b \) where
 (i) \(a = 1 + \sqrt{3}i, b = 1 - i \) (ii) \(a = 1 - i, b = i \) (iii) \(a = 23.14, b = i \).
 You will need a calculator for (iii) — can you give a reason for the form of the answer?

3. Let \(C \subset \mathbb{C} \) be the curve \(\{ (x, y) \mid y = 1 - x^2, y > 0 \} \) oriented so that it begins at \(-1\) and ends at \(1\). Compute:
 (i) \(\int_C zdz \) (ii) \(\int_C \sin(z)dz \) (iii) \(\int_C z\bar{z}dz \).

4. Let \(C \subset \mathbb{C} \) be the curve which joins 1 to \(-1\) by a straight line along the real-axis. Compute the three integrals in Question 3 again for this curve. Think before you do it. For which of the integrals did you need to do no work?

5. Let \(C \) be any curve from 1 to \(i \). Evaluate the following integrals:
 (i) \(\int_C \sin(z)dz \) (ii) \(\int_C (3z - 4i)^2dz \)

6. Use Cauchy’s integral formula and partial fractions to evaluate
 \[\int_{|z|=2} \frac{dz}{z^2 + 1} \]
 where the curve is oriented in an anti-clockwise direction.

7*. A function \(f : U \rightarrow \mathbb{R} \) on an open subset of \(\mathbb{R}^2 \) is called harmonic if it satisfies the partial differential equation
 \[f_{xx} + f_{yy} = 0. \]
 \[(f_{kk} = \frac{\partial^2 f}{\partial x^2} \text{ etc}) \]
 Show that if \(f = u + iv \) is complex analytic then \(u \) and \(v \) are harmonic.