9. CALCULUS OF MORE THAN ONE VARIABLE ${ }^{1}$

Review

Recall that last lecture we began to look at functions of of more than one variable.

9.2 Functions of Several Variables

The main features of single-variable calculus - limits, derivatives, chain rule, maximum-minimum techniques - all generalise to functions of several variables.
Definition. Let \mathcal{D} be a subset of \mathbb{R}^{2}. Suppose there is a relation which assigns to each (x, y) in \mathcal{D} a real number $f(x, y)$. Then f is said to be a function of two variables with domain \mathcal{D}.
Definition. Let f be a function of two variables with domain \mathcal{D}. The surface consisting of all points (x, y, z) of \mathbb{R}^{3} such that

$$
z=f(x, y)
$$

is called the graph of f.

Contours and level curves

An alternative method is often used to represent the graph of a function of 2 or more variables; namely to use contours or level curves.

Definition. The intersection of the horizontal plane $z=k$ with the surface $z=f(x, y)$ is called the contour curve of height k on the surface.

The vertical projection of this contour curve onto the $x y$-plane is called the level curve $f(x, y)=k$ of function f. Thus the level curves of f are curves in the $x y$-plane on which the value of f is constant.

