9.1 Surfaces in 3 dimensions.

In the plane, $f(x, y)=0$ is usually a curve; in three dimensions $F(x, y, z)=0$ usually represents a surface. Often we can solve for z and write $z=f(x, y)$, where f is a function of two variables. Planes: You know that the linear equation representing a plane is

$$
a x+b y+c z+d=0
$$

Cylinders: Consider the equation $\frac{x^{2}}{3^{2}}+y^{2}=1$ in \mathbb{R}^{3}.
In \mathbb{R}^{2} this represents an ellipse; as z does not appear, z may take any value whatsoever with x, y being related by $\frac{x^{2}}{3^{2}}+y^{2}=1$. We call this an elliptic cylinder in \mathbb{R}^{3}. We can also have parabolic and hyperbolic cylinders.

Quadric surfaces

An important class of surfaces, called the "quadric surfaces", arise from the general quadratic equation in three variables:

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z+g x+h y+i z+j=0 .
$$

As in two-dimensions we can write this as a matrix equation.

$$
\mathbf{x}^{t} A \mathbf{x}+K \mathbf{x}+\mathbf{j}=0
$$

where A is a symmetric 3×3 matrix, $K=\left[\begin{array}{lll}g & h & i\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
Using exactly the same method as for two dimensions, that is orthogonally diagonalizing A by an orthogonal matrix P (with $\operatorname{det} P=1$), we can eliminate the $x y, x z, y z$ terms. Completing the square then puts the equation in standard form.

Examples of quadric surfaces

(1) The ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(2) The hyperboloid of one sheet

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

(3) The hyperboloid of two sheets

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(4) The elliptic cone

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}} .
$$

(5) The elliptic paraboloid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

(6) The hyperbolic paraboloid

$$
-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}, \quad c>0
$$

