Review

Last lecture we learnt how to orthogonally diagonalise a real symmetric matrix A.

Quadratic Forms: Conic Sections

The equation: $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ can always be written in matrix form:

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{ll}
d & e
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+f=0
$$

or as $\mathbf{x}^{t} A \mathbf{x}+K \mathbf{x}+f=0$
where $\quad A=\left[\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right] \quad$ and $\quad K=\left[\begin{array}{ll}d & e\end{array}\right]$.
$\mathbf{x}^{t} A \mathbf{x}$ is called a quadratic form in two variables. More generally, if A is a symmetric $n \times n$ (real) matrix and $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{t} A \mathbf{x}$ is a quadratic form in n variables.

General procedure for identifying conics.

Case 1: $K=\left[\begin{array}{ll}0 & 0\end{array}\right]$.
(a) Write equation as $\mathbf{x}^{t} A \mathbf{x}+f=0$ where A is real and symmetric.
(b) Find P orthogonally diagonalising A and such that $\operatorname{det}(P)=1$.
(c) Substitute $\mathbf{x}=P \mathbf{x}^{\prime}$ to transform equation to

$$
\left(\mathbf{x}^{\prime}\right)^{t} P^{t} A P \mathbf{x}^{\prime}+f=\left(\mathbf{x}^{\prime}\right)^{t} D \mathbf{x}^{\prime}+f=\lambda_{1}\left(x^{\prime}\right)^{2}+\lambda_{2}\left(y^{\prime}\right)^{2}+f=0
$$

where D has diagonal entries λ_{1} and λ_{2}.
(d) Rearrange into standard form to identify conic.

Note: If P is orthogonal and $\operatorname{det}(P)=1$ then P is a rotation:

$$
P=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Case 2: $K \neq\left[\begin{array}{ll}0 & 0\end{array}\right]$.
Do (a), (b) and (c) as before to get:

$$
\lambda_{1}\left(x^{\prime}\right)^{2}+\lambda_{2}\left(y^{\prime}\right)^{2}+K P \mathbf{x}^{\prime}+f=0
$$

or

$$
\lambda_{1}\left(x^{\prime}\right)^{2}+\lambda_{2}\left(y^{\prime}\right)^{2}+c^{\prime} x^{\prime}+d^{\prime} y^{\prime}+f=0 .
$$

(d) Complete the square to get

$$
\lambda_{1}\left(x^{\prime}-x_{0}\right)^{2}+\lambda_{2}\left(y^{\prime}-y_{0}\right)^{2}=f^{\prime}
$$

(e) Substitute $x^{\prime \prime}=x^{\prime}-x_{0}$ and $y^{\prime \prime}=y^{\prime}=y_{0}$ and rearrange into standard form to identify conic.

