8.3 Orthogonal Diagonalisation

Definition. An $n \times n$ matrix P is said to be orthogonal if it is invertible and $P^{-1} = P^t$.

Theorem 8.4. The following statements are equivalent for an $n \times n$ matrix *P*.

- (i) *P* is an orthogonal matrix.
- (ii) $P^t P = I$.

(iii) $PP^t = I$.

(iv The rows of *P* form an orthonormal basis for \mathbb{R}^n .

(v) The columns of P form an orthonormal basis for \mathbb{R}^n .

2

Definition. An $n \times n$ matrix A is called orthogonally diagonalisable if there exists an orthogonal matrix P such that $D = P^{-1}AP(=P^tAP)$ is diagonal. The matrix P is said to orthogonally diagonalise the matrix A.

Evidently, an $n \times n$ matrix A is orthogonally diagonalisable if and only if it has an orthonormal set of n real eigenvectors (since Ais diagonalisable and the matrix P which diagonalises is orthogonal).

Theorem 8.5. A real $n \times n$ matrix A is orthogonally diagonalisable if and only if it is symmetric.

8.4 Quadratic Forms: Conic Sections

The general quadratic equation in two variables

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

can always be written in matrix form:

$$\underset{\sim}{x^{t}Ax} + Kx + f = 0$$

where
$$A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$$
 is a symmetric matrix, $\begin{array}{c} x \\ \sim \end{array} = \begin{bmatrix} x \\ y \end{bmatrix}$ and $K = \begin{bmatrix} d & e \end{bmatrix}$.

The first part of the equation, $\underset{\sim}{x^t}Ax$ is called a quadratic form in two variables.