8.3 Orthogonal Diagonalisation

Definition. An $n \times n$ matrix P is said to be orthogonal if it is invertible and $P^{-1}=P^{t}$.

Theorem 8.4. The following statements are equivalent for an $n \times n$ matrix P.
(i) P is an orthogonal matrix.
(ii) $P^{t} P=I$.
(iii) $P P^{t}=I$.
(iv The rows of P form an orthonormal basis for \mathbb{R}^{n}.
(v) The columns of P form an orthonormal basis for \mathbb{R}^{n}.

Definition. An $n \times n$ matrix A is called orthogonally diagonalisable if there exists an orthogonal matrix P such that $D=$ $P^{-1} A P\left(=P^{t} A P\right)$ is diagonal. The matrix P is said to orthogonally diagonalise the matrix A.

Evidently, an $n \times n$ matrix A is orthogonally diagonalisable if and only if it has an orthonormal set of n real eigenvectors (since A is diagonalisable and the matrix P which diagonalises is orthogonal).

Theorem 8.5. A real $n \times n$ matrix A is orthogonally diagonalisable if and only if it is symmetric.

8.4 Quadratic Forms: Conic Sections

The general quadratic equation in two variables

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

can always be written in matrix form:

$$
{\underset{\sim}{x}}^{t} A \underset{\sim}{x}+K \underset{\sim}{x}+f=0
$$

where $A=\left[\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right]$ is a symmetric matrix, $\underset{\sim}{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $K=\left[\begin{array}{ll}d & e\end{array}\right]$.
The first part of the equation, ${\underset{\sim}{x}}^{t} A \underset{\sim}{x}$ is called a quadratic form in two variables.

