8.3 Orthogonal Diagonalisation

Definition. An \(n \times n \) matrix \(P \) is said to be orthogonal if it is invertible and \(P^{-1} = P^t \).

Theorem 8.4. The following statements are equivalent for an \(n \times n \) matrix \(P \).

(i) \(P \) is an orthogonal matrix.

(ii) \(P^t P = I \).

(iii) \(PP^t = I \).

(iv) The rows of \(P \) form an orthonormal basis for \(\mathbb{R}^n \).

(v) The columns of \(P \) form an orthonormal basis for \(\mathbb{R}^n \).

Definition. An \(n \times n \) matrix \(A \) is called orthogonally diagonalisable if there exists an orthogonal matrix \(P \) such that \(D = P^{-1}AP = P^t AP \) is diagonal. The matrix \(P \) is said to orthogonally diagonalise the matrix \(A \).

Evidently, an \(n \times n \) matrix \(A \) is orthogonally diagonalisable if and only if it has an orthonormal set of \(n \) real eigenvectors (since \(A \) is diagonalisable and the matrix \(P \) which diagonalises is orthogonal).

Theorem 8.5. A real \(n \times n \) matrix \(A \) is orthogonally diagonalisable if and only if it is symmetric.
The general quadratic equation in two variables

\[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

can always be written in matrix form:

\[x^t Ax + Kx + f = 0 \]

where \(A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \) is a symmetric matrix, \(x = \begin{bmatrix} x \\ y \end{bmatrix} \) and \(K = \begin{bmatrix} d & e \end{bmatrix} \).

The first part of the equation, \(x^t Ax \) is called a quadratic form in two variables.