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1 Introduction

The mathematical motivation for studying vector bundles comes from the example of the tangent bundle
TM of a manifold M . Recall that the tangent bundle is the union of all the tangent spaces TmM for
every m in M . As such it is a collection of vector spaces, one for every point of M .

The physical motivation comes from the realisation that the fields in physics may not just be maps
φ : M → CN say, but may take values in different vector spaces at each point. Tensors do this for
example. The argument for this is partly quantum mechanics because, if φ is a wave function on a
space-time M say, then what we can know about are expectation values, that is things like:∫

M

〈φ(x), φ(x)〉dx

and to define these all we need to know is that φ(x) takes its values in a one-dimensional complex vector
space with Hermitian inner product. There is no reason for this to be the same one-dimensional Hermitian
vector space here as on Alpha Centauri. Functions like φ, which are generalisations of complex valued
functions, are called sections of vector bundles.

We will consider first the simplest theory of vector bundles where the vector space is a one-dimensional
complex vector space - line bundles.

1.1 Definition of a line bundle and examples

The simplest example of a line bundle over a manifold M is the trivial bundle C ×M . Here the vector
space at each point m is C× {m} which we regard as a copy of C. The general definition uses this as a
local model.

Definition 1.1. A complex line bundle over a manifold M is a manifold L and a smooth surjection
π : L→M such that:

1. Each fibre π−1(m) = Lm is a a complex one-dimensional vector space.

2. Every m ∈ M has an open neighbourhood U ∈ M for which there is a diffeomeorphism ϕ :
π−1(U) → U × C such that ϕ(Lm) ⊂ {m} × C for every m and that moreover the map ϕ|Lm :
Lm → {m} × C is a linear isomorphism.

Note 1.1. The second condition is called local triviality because it says that locally the line bundle looks
like C×M . We leave it as an exercise to show that local triviality makes the map π a submersion (that
is it has onto derivative) and the scalar multiplication and vector addition maps smooth. In the quantum
mechanical example local triviality means that at least in some local region like the laboratory we can
identify the Hermitian vector space where the wave function takes its values with C.

Example 1.1. C×M the trivial bundle

Example 1.2. Recall that if u ∈ S2 then the tangent space at u to S2 is identified with the set TuS
2 =

{v ∈ R3 | 〈v, u〉 = 0}. We make this two dimensional real vector space a one dimensional complex vector
space by defining (α+iβ)v = α.v+β.u×v. We leave it as an exercise for the reader to show that this does
indeed make TuS

2 into a complex vector space. What needs to be checked is that [(α+ iβ) (δ + iγ)]v =
(α+iβ) [(δ+iγ)]v and because TuS

2 is already a real vector space this follows if i(iv) = −v. Geometrically
this follows from the fact that we have defined multiplication by i to mean rotation through π/2. We
will prove local triviality in a moment.

Example 1.3. If Σ is any surface in R3 we can use the same construction as in (2). If x ∈ Σ and n̂x is
the unit normal then TxΣ = n̂⊥x . We make this a complex space by defining (α+ iβ)v = αv + βn̂x × v.

Example 1.4 (Hopf bundle). Define CP1 to be the set of all lines (through the origin) in C2. Denote the
line through the vector z = (z0, z1) by [z] = [z0, z1]. Note that [λz0, λz1] = [z0, z1] for any non-zero
complex number λ. Define two open sets Ui by

Ui = {[z0, z1] | zi 6= 0}
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and co-ordinates by ψi : Ui → C by ψ0([z]) = z1/z0 and ψ1([z]) = z0/z1. As a manifold CP1 is diffeo-
morphic to S2. An explicit diffeomorphism S2 → CP1 is given by (x, y, z) 7→ [x+ iy, 1− z].

We define a line bundle H over CP1 by H ⊂ C2 × CP1 where

H = {(w, [z]) | w = λz for some λ ∈ C×}.

We define a projection π : H → CP1 by π((w, [z])) = [z]. The fibre H[z] = π−1([z]) is the set

{(λz, [z]) | λ ∈ C×}

which is naturally identified with the line through [z]. It thereby inherits a vector space structure given
by

α(w, [z]) + β(w′, [z]) = (αw + βw′, [z]).

We shall prove later that this is locally trivial.

1.2 Isomorphism of line bundles

It is useful to say that two line bundles L→M,J →M are isomorphic if there is a diffeomorphism map
ϕ : L → J such that ϕ(Lm) ⊂ Jm for every m ∈ M and such that the induced map ϕ|Lm : Lm → Jm is
a linear isomorphism.

We define a line bundle L to be trivial if it is isomorphic to M × C the trivial bundle. Any such
isomorphism we call a trivialisation of L.

1.3 Sections of line bundles

A section of a line bundle L is like a vector field. That is it is a map ϕ : M → L such that ϕ(m) ∈ Lm
for all m or more succinctly π ◦ ϕ = idm.

Example 1.5 (The trivial bundle.). L = C ×M. Every section ϕ looks like ϕ(x) = (f(x), x) for some
function f .

Example 1.6 (The tangent bundle to S2.). TS2. Sections are vector fields. Alternatively because each
TxS2 ⊂ R3 we can think of a section s as a map s : S2 → R3 such that 〈s(x), x〉 = 0 for all x ∈ S2.

Example 1.7 (The Hopf bundle). By definition a section s : CP1 → H is a map

s : CP1 → H ⊂ C2 × CP1

which must have the form [z] 7→ ([z], w). For convenience we will write it as s([z]) = ([z], s(z)) where, for
any [z] s : CP1 → C2 satisfies s([z]) = λz for some λ ∈ C×.

The set of all sections, denoted by Γ(M,L), is a vector space under pointwise addition and scalar
multiplication. I like to think of a line bundle as looking like Figure 1.

Here O is the set of all zero vectors or the image of the zero section. The curve s is the image of a
section and thus generalises the graph of a function.

We have the following result:

Proposition 1.1. A line bundle L is trivial if and only if it has a nowhere vanishing section.

Proof. Let ϕ : L→M × C be the trivialisation then ϕ−1(m, 1) is a nowhere vanishing section.
Conversely if s is a nowhere vanishing section then define a trivialisation M × C → L by (m,λ) 7→

λs(m). This is an isomorphism.

Note 1.2. . The condition of local triviality in the definition of a line bundle could be replaced by the
existence of local nowhere vanishing sections. This shows that TS2 is locally trivial as it clearly has local
nowhere-vanishing vector fields. Recall however the so called ‘hairy-ball theorem’ from topology which
tells us that S2 has no global nowhere vanishing vector fields. Hence TS2 is not trivial. We shall prove
this result a number of times.
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Figure 1: A line bundle.

1.4 Transition functions and the clutching construction

Local triviality means that every property of a line bundle can be understood locally. This is like
choosing co-ordinates for a manifold. Given L → M we cover M with open sets Uα on which there are
nowhere vanishing sections sα. If ξ is a global section of L then it satisfies ξ|Uα = ξαsα for some smooth
ξα : Uα → C. The converse is also true. If we can find ξα such that ξαsα = ξβsβ for all α, β then they fit
together to define a global section ξ with ξ|Uα = ξαsα.

It is therefore useful to define gαβ : Uα ∩ Uβ → C× by sα = gαβsβ . Then a collection of functions ξα
define a global section if on any intersection Uα ∩ Uβ we have ξβ = gαβξα. The functions gαβ are called
the transition functions of L. We shall see in a moment that they determine L completely. It is easy to
show, from their definition, that the transition functions satisfy three conditions:

(1) gαα = 1

(2) gαβ = g−1
βα

(3) gαβ gβγ gγα = 1 on Uα ∩ Uβ ∩ Uγ

The last condition (3) is called the cocycle condition.

Proposition 1.2. Given an open cover {Uα} of M and functions gαβ : Uα ∩Uβ → C× satisfying (1) (2)
and (3) above we can find a line bundle L→M with transition functions the gαβ.

Proof. Consider the disjoint union M̃ of all the C × Uα. We stick these together using the gαβ . More

precisely let I be the indexing set and define M̃ as the subset of I×M of pairs (α,m) such that m ∈ Uα.
Now consider C × M̃ whose elements are triples (λ,m, α) and define (λ,m, α) ∼ (µ, n, β) if m = n and
gαβ(m)λ = µ. We leave it as an exercise to show that ∼ is an equivalence relation. Indeed ((1) (2) (3)
give reflexivity, symmetry and transitivity respectively.)

Denote equivalence classes by square brackets and define L to be the set of equivalence classes. Define
addition by [(λ,m, α)]+[(µ,m,α)] = [(λ+µ,m,α)] and scalar multiplication by z[(λ,m, α)] = [(zλ,m, α)].
The projection map is π([(λ,m, α)]) = m. We leave it as an exercise to show that these are all well-defined.
Finally define sα(m) = [(1,m, α)]. Then sα (m) = [(1,m, α)] = [(gαβ (m),m, β)] = gαβ (m)sβ (m) as
required.

Finally we need to show that L can be made into a differentiable manifold in such a way that it is a
line bundle and the sα are smooth. Denote by Wα the preimage of Uα under the projection map. There
is a bijection ψα : Wα → C × Uα defined by ψα([α, x, z]) = (z, x). This is a local trivialisation. If (V, φ)
is a co-ordinate chart on Uα×C then we can define a chart on L by (φ−1

α (V ), φα ◦ψα). We leave it as an
exercise to check that these charts define an atlas. This depends on the fact that gαβ : Uα ∩ Uβ → C× is
smooth.
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Figure 2: Vector fields on the two sphere.
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Figure 3: The sections s0 and s1 restricted to the equator.

The construction we have used here is called the clutching construction. It follows from this proposition
that the transition functions capture all the information contained in L. However they are by no means
unique. Even if we leave the cover fixed we could replace each sα by hαsα where hα : Uα → C× and then
gαβ becomes hαgαβh

−1
β . If we continued to try and understand this ambiguity and the dependence on

the cover we would be forced to invent Cêch cohomology and show that that the isomorphism classes of
complex line bundles on M are in bijective correspondence with the Cêch cohomology group H1(M,C×).
We refer the interested reader to [11, 8]. We note in passing that the conditions (1), (2) and (3) are
equivalent to the usual Cêch cocycle condition that gβγg

−1
αβgαβ = 1.

Example 1.8. The tangent bundle to the two-sphere. Cover the two sphere by open sets U0 and U1 cor-
responding to the upper and lower hemispheres but slightly overlapping on the equator. The intersection
of U0 and U1 looks like an annulus. We can find non-vanishing vector fields s0 and s1 as in Figure 2.

If we undo the equator to a straightline and restrict s0 and s1 to that we obtain Figure 3.
If we solve the equation s0 = g01s1 then we are finding out how much we have to rotate s1 to get s0

and hence defining the map g01 : U0∩U1 → C× with values in the unit circle. Inspection of Figure 3 shows
that as we go around the equator once s0 rotates forwards once and s1 rotates backwards once so that
thought of as a point on the unit circle in C× g01 rotates around twice. In other words g01 : U0∩U1 → C×
has winding number 2. This two will be important latter.
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Example 1.9 (Hopf bundle.). We can define sections si : Uα → H by

s0[z] =((1,
z1

z0
), [z]) (1.1)

s1[z] =((
z0

z1
, 1), [z]). (1.2)

The transition functions are

g01([z]) =
z1

z0
.

2 Connections, holonomy and curvature

The physical motivation for connections is that you can’t do physics if you can’t differentiate the fields!
So a connection is a rule for differentiating sections of a line bundle. The important thing to remember is
that there is no a priori way of doing this - a connection is a choice of how to differentiate. Making that
choice is something extra, additional structure above and beyond the line bundle itself. The reason for
this is that if L→M is a line bundle and γ : (−ε, ε)→M a path through γ(0) = m say and s a section
of L then the conventional definition of the rate of change of s in the direction tangent to γ, that is:

lim
t→0

=
s(γ(t))− s(γ(0))

t

makes no sense as s(γ(t)) is in the vector space Lγ(t) and s(γ(0)) is in the different vector space Lγ(0) so
that we cannot perform the required subtraction.

So being pure mathematicians we make a definition by abstracting the notion of derivative:

Definition 2.1. A connection ∇ is a linear map

∇ : Γ(M,L)→ Γ(M,T ∗M ⊗ L)

such that for all s in Γ(M,L) and f ∈ C∞(M,L) we have the Liebniz rule:

∇(fs) = df ⊗ s+ f∇s

If X ∈ TxM we often use the notation ∇Xs = (∇s)(X).

Example 2.1 (The trivial bundle.). L = C ×M. Then identifying sections with functions we see that
(ordinary) differentiation d of functions defines a connection. If ∇ is a general connection then we will
see in a moment that ∇s− ds is a 1-form. So all the connections on L are of the form ∇ = d+ A for A
a 1-form on M (any 1-form).

Example 2.2 (The tangent bundle to the sphere.). TS2. If s is a section then s : S2 → R3 such that
s(u) ∈ TuS2 that is 〈s(u), u〉 = 0. As s(u) ∈ R3 we can differentiate it in R3 but then ds may not take
values in TuS

2 necessarily. We remedy this by defining

∇(s) = π(ds)

where π is orthogonal projection from R3 onto the tangent space to x. That is π(v) = v − 〈x, v〉x.

Example 2.3 (The tangent bundle to a surface.). A surface Σ in R3. We can do the same orthogonal
projection trick as with the previous example.

Example 2.4 (The Hopf bundle.). Because we have H ⊂ C2 × CP1 we can apply the same technique
as in the previous sections. A section s of H can be identified with a function s : CP1 → C2 such that
s[z] = λz for some λ ∈ C. Hence we can differentiate it as a map into C2. We can then project the result
orthogonally using the Hermitian connection on C2.
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The name connection comes from the name infinitesimal connection which was meant to convey
the idea that the connection gives an identification of the fibre at a point and the fibre at a nearby
‘infinitesimally close’ point. Infinitesimally close points are not something we like very much but we shall
see in the next section that we can make sense of the ‘integrated’ version of this idea in as much as a
connection, by parallel transport, defines an identification between fibres at endpoints of a path. However
this identification is generally path dependent. Before discussing parallel transport we need to consider
two technical points.

The first is the question of existence of connections. We have

Proposition 2.1. Every line bundle has a connection.

Proof. Let L→M be the line bundle. Choose an open covering of M by open sets Uα over which there
exist nowhere vanishing sections sα. If ξ is a section of L write it locally as ξ|Uα = ξαsα. Choose a
partition of unity ρα for subordinate to the cover and note that ραsα extends to a smooth function on
all of M . Then define

∇(ξ) =
∑

dξαραsα.

We leave it as an exercise to check that this defines a connection.

The second point is that we need to be able to restrict a connection to a open set so that we can work
with local trivialisations. We have

Proposition 2.2. If ∇ is a connection on a line bundle L → M and U ⊂ M is an open set then there
is a unique connection ∇U on L|U → U satisfying

∇(s)IU = ∇U (s|U ).

Proof. We first need to show that if s is a section which is zero in a neighbourhood of a point x then
∇(s)(x) = 0. To show this notice that if s is zero on a neighbourhood U of x then we can find a function
ρ on M which is 1 outside U and zero in a neighbourhood of x such that ρs = s. Then we have

∇(s)(x) = ∇(ρs)(x) = dρ(x)s(x) + ρ(x)∇(s)(x) = 0.

It follows from linearity that if s and t are equal in a neighbourhood of x then ∇(s)(x) = ∇(t)(x).
If s is a section of L over U and x ∈ U then we can multiply it by a bump function which is 1 in a
neighbourhood of x so that it extends to a section ŝ of L over all of M . Then define ∇U (s)(x) = ∇(ŝ)(x).
If we choose a different bump function to extend s to a different section s̃ then s̃ and ŝ agree in a
neighbourhood of x so that the definition of ∇U (s)(x) does not change.

From now on I will drop the notation ∇|U and just denote it by ∇.
Let L→M be a line bundle and sα : Uα → L be local nowhere vanishing sections. Define a one-form

Aα on Uα by ∇sα = Aα ⊗ sα. If ξ ∈ Γ(M,L) then ξ|Uα = ξαsα where ξα : Uα → C and

∇ξ|Uα = dξαsα + ξα∇sα
= (dξα +Aαξα)sα. (2.1)

Recall that sα = gαβsβ so ∇sα = dgαβsβ + gαβ∇sβ and hence Aαsα = g−1
αβdgαβgαβsα + sαAβ . Hence

Aα = Aβ + g−1
αβdgαβ (2.2)

The converse is also true. If {Aα} is a collection of 1-forms satisfying the equation (2.2) on Uα ∩Uβ then
there is a connection ∇ such that ∇sα = Aαsα. The proof is an exercise using equation (2.1) to define
the connection.
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θ

Figure 4: Parallel transport on the two sphere.

2.1 Parallel transport and holonomy

If γ : [0, 1]→M is a path and ∇ a connection we can consider the notion of moving a vector in Lγ(0) to
Lγ(1) without changing it, that is parallel transporting a vector from Lγ(0), Lγ(1). Here change is measured
relative to ∇ so if ξ(t) ∈ Lγ(t) is moving without changing it must satisfy the differential equation:

∇γ̇ξ = 0 (2.3)

where γ̇ is the tangent vector field to the curve γ. Assume for the moment that the image of γ is
inside an open set Uα over which L has a nowhere vanishing section sα. Then using (2.3) and letting
ξ(t) = ξα(t)sα(γ(t)) we deduce that

dξα
dt

= −Aα(γ)ξα

or

ξα(t) = exp
(
−
∫ t

0

Aα(γ(t)
)
ξα(0) (2.4)

This is an ordinary differential equation so standard existence and uniqueness theorems tell us that
parallel transport defines an isomorphism Lγ(0)

∼= Lγ(t). Moreover if we choose a curve not inside a
special open set like Uα we can still cover it by such open sets and deduce that the parallel transport

Pγ : Lγ(0) → Lγ(1)

is an isomorphism. In general Pγ is dependent on γ and ∇. The most notable example is to take γ a
loop that is γ(0) = γ(1). Then we define hol(γ,∇), the holonomy of the connection ∇ along the curve γ
by taking any s ∈ Lγ(0) and defining

Pγ(s) = hol (γ,∇).s

Example 2.5. A little thought shows that ∇ on the two sphere preserves lengths and angles, it corresponds
to moving a vector so that the rate of change is normal. If we consider the ‘loop’ in Figure 4 then we
have drawn parallel transport of a vector and the holonomy is exp(iθ).

2.2 Curvature

If we have a loop γ whose image is in Uα then we can apply (2.4) to obtain

hol (∇, γ) = exp (−
∫
γ

Aα).
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If γ is the boundary of a disk D then by Stokes’ theorem we have

hol (∇, γ) = exp−
∫
D

dAα. (2.5)

Consider the two-forms dAα. From (2.2) we have

dAα = dAβ + d
(
g−1
αβdgαβ

)
= dAβ − g−1

αβdgαβg
−1
αβ ∧ dgαβ + g−1

αβddgαβ

= dAβ .

So the two-forms dAα agree on the intersections of the open sets in the cover and hence define a global
two form that we denote by F and call the curvature of ∇. Then we have

Proposition 2.3. If L→ M is a line bundle with connection ∇ and Σ is a compact submanifold of M
with boundary a loop γ then

hol (∇, γ) = exp −
∫
D

F

Proof. Notice that (2.5) gives the required result if Σ is a disk which is inside one of the Uα. Now consider
a general Σ. By compactness we can triangulate Σ in such a way that each of the triangles is in some
Uα. Now we can apply (2.5) to each triangle and note that the holonomy up and down the interior edges
cancels to give the required result.

Example 2.6. We calculate the holonomy of the standard connection on the tangent bundle of S2. Let
us use polar co-ordinates: The co-ordinate tangent vectors are:

∂

∂θ
= (− sin(θ) sin(φ), cos(θ) sin(φ), 0)

∂

∂φ
= (cos(θ) cos(φ), sin(θ) cos(φ),− sin(φ))

Taking the cross product of these and normalising gives the unit normal

n̂ = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))

= sin(φ)
∂

∂φ
× ∂

∂θ

To calculate the connection we need a non-vanishing section s we take

s = (− sin(θ), cos(θ), 0)

and then
ds = (− cos(θ),− sin(θ), 0)dθ

so that

∇s = π(ds)

= ds− < ds, n̂ > n̂

= (− cos(θ),− sin(θ), 0)dθ

+ sin(φ) (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))dθ

= (− cos(θ) cos2(φ),− sin(θ) cos2(φ), cos(φ) sin(φ))dθ

= cos(φ)n̂× s
= i cos(φ)s
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Hence A = i cos(φ)dθ and F = i sin(φ)dθ∧dφ. To understand what this two form is note that the volume
form on the two-sphere is vol = − sin(φ)dθ ∧ dφ and hence F = ivol The region bounded by the path in
Figure 4 has area θ. If we call that region D we conclude that

exp
(
−
∫
D

F
)

= exp iθ.

Note that this agrees with the previous calculation for the holonomy around this path.

2.3 Curvature as infinitesimal holonomy

The equation hol(−∇, ∂D) = exp (−
∫
D
F ) has an infinitesimal counterpart. If X and Y are two tangent

vectors and we let Dt be a parallelogram with sides tX and tY then the holonomy around Dt can be
expanded in powers of t as

hol (∇, Dt) = 1 + t2 F (X,Y ) + 0(t3).

3 Chern classes

In this section we define the Chern class which is a (topological) invariant of a line bundle. Before doing
this we collect some facts about the curvature.

Proposition 3.1. The curvature F of a connection ∇ satisfies:

(i) dF = 0

(ii) If ∇,∇′ are two connections then ∇ = ∇′ + η for η a 1-form and F∇ = F∇′ + dη.

(iii) If Σ is a closed surface then 1
2πi

∫
Σ
F∇ is an integer independent of ∇.

Proof. (i) dF |Uα = d(dAα) = 0.
(ii) Locally A′α = Aα + ηα as ηα = A′α − Aα. But Aβ = Aα − g−1

αβdgαβ and A′β = A′α − g−1
αβdgαβ so that

ηβ = ηα. Hence η is a global 1-form and F∇ = dAα so F ′∇ = F∇ + dη.
(iii) If Σ is a closed surface then ∂Σ = ∅ so by Stokes’ theorem

∫
Σ
F∇ =

∫
Σ
F ′∇. Now choose a family

of disks Dt in Σ whose limit as t → 0 is a point. For any t the holonomy of the connection around the
boundary of Dt can be calculated by integrating the curvature over Dt or over the complement of Dt in
Σ and using Proposition 2.1. Taking into account orientation this gives us

exp(

∫
Σ−Dt

F ) = exp(−
∫
Dt

F )

and taking the limit as t→ 0 gives

exp(

∫
Σ

F ) = 1

which gives the required result.

The Chern class, c(L), of a line bundle L → Σ where Σ is a surface is defined to be the integer
1

2πi

∫
Σ
F∇ for any connection ∇.

Example 3.1. For the case of the two sphere previous results showed that F = −ivolS2 . Hence

c(TS2) =
−i
2πi

∫
S2

vol =
−i
2πi

4π = −2.

Some further insight into the Chern class can be obtained by considering a covering of S2 by two
open sets U0, U1 as in Figure 2. Let L → S2 be given by a transition for g01 : U0 ∩ U1 → C×. Then a
connection is a pair of 1-forms A0, A1, on U0, U1 respectively, such that

A1 = A0 + dg10g
−1
10 on U0 ∩ U1.
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U1 U2 U3 Ug Ug−1
g holes

Figure 5: A surface of genus g.

Take A0 = 0 and A1 to be any extension of dg10g
−1
10 to U1. Such an extension can be made by shrinking

U0 and U1 a little and using a cut-off function. Then F = dA0 = 0 on U0 and F = dA1 on U1. To find
c(L) we note that by Stokes theorem:∫

S2

F =

∫
U1

F =

∫
∂U1

A1 =

∫
∂U1

dg10g
−1
10 .

But this is just 2πi the winding number of g10. Hence the Chern class of L is the winding number of
g10. Note that we have already seen that for TS2 the winding number and Chern class are both −2. It
is not difficult to go further now and prove that isomorphism classes of line bundles on S2 are in one to
one correspondence with the integers via the Chern class but will not do this here.

Example 3.2. Another example is a surface Σg of genus g as in Figure 5. We cover it with g open sets
U1, . . . , Ug as indicated. Each of these open sets is diffeomorphic to either a torus with a disk removed or
a torus with two disks removed. A torus has a non-vanishing vector field on it. If we imagine a rotating
bicycle wheel then the inner tube of the tyre (ignoring the valve!) is a torus and the tangent vector field
generated by the rotation defines a non-vanishing vector field. Hence the same is true of the open sets in
Figure 5. There are corresponding transition functions g12, g23, . . . , gg−1g and we can define a connection
in a manner analogous to the two-sphere case and we find that

c(TΣg) =

g−1∑
i=1

winding number(gi,i+1).

All the transition functions have winding number −2 so that

c(TΣg) = 2− 2g.

This is a form of the Gauss-Bonnet theorem. It would be a good exercise for the reader familiar with the
classical Riemannian geometry of surfaces in R3 to relate this result to the Gauss-Bonnet theorem. In the
classical Gauss-Bonnet theorem we integrate the Gaussian curvature which is the trace of the curvature
of the Levi-Civita connection.

So far we have only defined the Chern class for a surface. To define it for manifolds of higher dimension
we need to recall the definition of de Rham cohomology [4]. If M is a manifold we have the de Rham
complex

0→ Ω0(M)→ Ω1(M)→ ...→ Ωm(M)→ 0.

where Ωp(M) is the space of all p forms on M , the horizontal maps are d the exterior derivative and
m = dim(M). Then d2 = 0 and it makes sense to define:

Hp(M) =
kernel d : Ωp (M)→ Ωp+1 (M)

image d : Ωp−1 (M)→ Ωp (M)

This is the pth de Rham cohomology group of M - a finite dimensional vector space if M is compact or
otherwise well behaved.
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The general definition of c(L) is to take the cohomology class in H2(M) containing 1
2πiF∇ for some

connection.
It is a standard result [4] that if M is oriented, compact, connected and two dimensional integrating

representatives of degree two cohomology classes defines an isomorphism

H2(M) → R

[ω] 7→
∫
M

ω

where [ω] is a cohomology class with representative form ω. Hence we recover the definition for surfaces.

4 Vector bundles and gauge theories

Line bundles occur in physics in electromagnetism. The electro-magnetic tensor can be interpreted as
the curvature form of a line bundle. A very nice account of this and related material is given by Bott in
[3]. More interesting however are so-called non-abelian gauge theories which involve vector bundles.

To generalize the previous sections to a vector bundles E one needs to work through replacing C by
Cn and C× by GL(n,C). Now non-vanishing sections and local trivialisations are not the same thing. A
local trivialisation corresponds to a local frame, that is n local sections s1, ..., sn such that s1(m), ..., sn(m)
are a basis for Em all m. The transition function is then matrix valued

gαβ : Uα ∩ Uβ → GL(n,C).

The clutching construction still works.
A connection is defined the same way but locally corresponds to matrix valued one-forms Aα. That

is
∇|Uα(Σiξ

isi) = Σi(dξi+ ΣjA
i
αjξ

j)si

and the relationship between Aβ and Aα is

Aβ = g−1
αβ Aα gαβ + g−1

αβ dgαβ .

The correct definition of curvature is

Fα = dAα +Aα ∧Aα

where the wedge product involves matrix multiplication as well as wedging of one forms. We find that

Fβ = g−1
αβ Fα gαβ

and that F is properly thought of as a two-form with values in the linear operators on E. That is if X
and Y are vectors in the tangent space to M at m then F (X,Y ) is a linear map from Em to itself.

We have no time here to even begin to explore the rich geometrical theory that has been built out of
gauge theories and instead refer the reader to some references [1, 2, 6, 7].

We conclude with some remarks about the relationship of the theory we have developed here and
classical Riemannian differential geometry. This is of course where all this theory began not where it
ends! There is no reason in the above discussion to work with complex vector spaces, real vector spaces
would do just as well. In that case we can consider the classical example of tangent bundle TM of a
Riemannian manifold. For that situation there is a special connection, the Levi-Civita connection. If
(x1, . . . , xn) are local co-ordinates on the manifold then the Levi-Civita connection is often written in
terms of the Christoffel symbols as

∇ ∂

∂xi

(
∂

∂xj
) =

∑
k

Γkij
∂

∂xk
.

The connection one-forms are supposed to be matrix valued and they are∑
i

Γkijdx
i.
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The curvature F is the Riemann curvature tensor R. As a two-form with values in matrices it is∑
ij

Rkijkdx
i ∧ dxj .
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