Lie Algebras IV 2008

Root system of $\operatorname{sl}(n, \mathbb{C})$

As usual let $E_{i j}$ be the matrix with a 1 in the (i, j) the position and 0 's everywhere else. Let $D_{i j}=E_{i i}-E_{j j}$. Let $h_{i}=D_{i i+1}$. A basis for $\operatorname{sl}(n, \mathbb{C})$ is given by the h_{1}, \ldots, h_{n-1} and the $E_{i j}$ for $i \neq j$. Let H be the subalgebra of diagonal (traceless) matrices which we have seen in lectures is a Cartan subalgebra. Let $\epsilon_{j}: H \rightarrow \mathbb{C}$ be defined by $\epsilon_{j}\left(\sum_{i=1}^{n} x_{i} E_{i i}\right)=x_{j}$. We have already seen that the roots are given by

$$
\Phi=\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leq i \neq j \leq n\right\}
$$

and the $\epsilon_{i}-\epsilon_{j}$ root space is spanned by $E_{i j}$. Note that this makes sense as H has dimension $n-1$ and $\operatorname{sl}(n, \mathbb{C})$ has dimension $n^{2}-1$ so that we expect that there are $n^{2}-1-(n-1)=n^{2}-1$ roots. Note also that the ϵ_{i} are not a basis of H^{*} as there are too many of them and $\epsilon_{1}+\cdots+\epsilon_{n}=0$. I leave it as an exercise to show that $\epsilon_{1}-\epsilon_{2}, \ldots, \epsilon_{n-1}-\epsilon_{n}$ is a basis of H^{*}.

If $\alpha=\epsilon_{i}-\epsilon_{j}$ then the standard basis of $\operatorname{sl}(\alpha)$ is given by $h_{\alpha}=D_{i j}, e_{\alpha}=E_{i j}$ and $f_{\alpha}=E_{j i}$. This is easy to check as

$$
\begin{aligned}
{\left[h_{\alpha}, e_{\alpha}\right] } & =\left[D_{i j}, E_{i j}\right] \\
& =\left[E_{i i}-E_{j j}, E_{i j}\right] \\
& =\left[E_{i i}, E_{i j}\right]-\left[E_{j j}, E_{i j}\right] \\
& =E_{i j}-(-1) E_{i j} \\
& =2 E_{i j}
\end{aligned}
$$

Likewise $\left[h_{\alpha}, f_{\alpha}\right]=\left[D_{i j}, E_{j i}\right]=-\left[D_{j i}, E_{j i}\right]=-2 E_{j i}$ and $\left[e_{\alpha}, f_{\alpha}\right]=\left[E_{i j}, E_{j i}\right]=E_{i i}-E_{j j}=D_{i j}$.
There is a theorem which we didn't prove that tells us the Killing form is a multiple of the form $\operatorname{tr}(X Y)$ but we can compute directly when we just want the Killing form on H. It suffices to compute $\kappa\left(h_{i}, h_{j}\right)$. As $\operatorname{sl}(n, \mathbb{C})$ is an ideal in $g l(n, \mathbb{C})$ s we can compute the Killing form in the latter space which makes things slightly easier. In $g l(n, \mathbb{C})$

$$
\kappa\left(h_{i}, h_{j}\right)=\kappa\left(E_{i i}, E_{j j}\right)-\kappa\left(E_{i i}, E_{j+1 j+1}\right)-\kappa\left(E_{i+1 i+1}, E_{j j}\right)+\kappa\left(E_{i+1 i+1} E_{j+1 j+1}\right) .
$$

so it suffices to compute $\operatorname{tr}\left(\operatorname{ad}\left(E_{i i}\right) \operatorname{ad}\left(E_{j j}\right)\right)$ in $g l(n, \mathbb{C})$. We have

$$
\operatorname{ad}\left(E_{i i}\right) \operatorname{ad}\left(E_{j j}\right)\left(E_{k l}\right)=\left(\delta_{i k}-\delta_{l i}\right)\left(\delta_{j k}-\delta_{l j}\right) E_{k l}
$$

so that

$$
\begin{aligned}
\operatorname{tr}\left(\operatorname{ad}\left(E_{i i}\right) \operatorname{ad}\left(E_{j j}\right)\right) & =\sum_{k l}\left(\delta_{i k}-\delta_{l i}\right)\left(\delta_{j k}-\delta_{l j}\right) \\
& =\sum_{k l}\left(\delta_{i k} \delta_{j k}-\delta_{i k} \delta_{j l}-\delta_{l i} \delta_{j k}+\delta_{l i} \delta_{l j}\right. \\
& =n \delta_{i j}-1-1+n \delta_{i j} \\
& =2 n\left(\delta_{i j}-1\right) .
\end{aligned}
$$

But we also have $\operatorname{tr}\left(E_{i i} E_{j j}\right)=\delta_{i j}$ so that $\operatorname{tr}\left(\operatorname{ad}\left(E_{i i}\right) \operatorname{ad}\left(E_{j j}\right)\right)=2 n \operatorname{tr}\left(E_{i i} E_{j j}\right)$ and it is easy to then show that

$$
\kappa\left(h_{i}, h_{j}\right)=2 n \operatorname{tr}\left(h_{i} h_{j}\right)
$$

As we saw in lectures a root system is unchanged if we scale the inner product. So we may as well work with $(1 / 2 n) \kappa$ which is more convenient. It is easy to identify H with a subspace of \mathbb{C}^{n} by mapping any diagonal matrix to the vector of its diagonal entries. With this choice the roots are the vectors $\alpha_{i j}=e_{i}-e_{j}$ which we think of as living in \mathbb{R}^{n} and the inner product of two roots is just the usual inner product on \mathbb{R}^{n} restricted to the $n-1$ dimensional subspace

$$
E=\left\{x \in \mathbb{R}^{n} \mid x^{1}+x^{2}+\cdots+x^{n}=0\right\} .
$$

The roots are

$$
\Phi=\left\{e_{i}-e_{j} \mid i \neq j\right\}
$$

if, as usual, e_{i} is the vector with a one in the i th place and zeros elsewhere. If we want to find a base for Φ then we note that $\left(e_{i}-e_{j}\right)(z)=z_{i}-z_{j}$ so we need to choose a $z \in E$ which has all its components distinct.

One choice is $z_{1}>z_{2}>\cdots>z_{n}$ and then the base of simple roots is given by $\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-1}=$ $e_{n-1}-e_{n}$. We have

$$
\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}2 & \text { if }|i-j|=0 \\ -1 & \text { if }|i-j|=1 \\ 0 & \text { if }|i-j|>1\end{cases}
$$

so the Cartan matrix is

$$
\left(\begin{array}{cccccc}
2 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

and the Dynkin diagram is

Finally consider $\operatorname{sl}(3, \mathbb{C})$ where we can draw the root system. We take as a base of simple roots the roots $\alpha_{1}=e_{1}-e_{2}=(1,-1,0)$ and $\alpha_{2}=e_{2}-e_{3}=(0,1,-1)$. We have $\left(\alpha_{1}, \alpha_{1}\right)=\left(\alpha_{2}, \alpha_{2}\right)=2$ and $\left(\alpha_{1}, \alpha_{2}\right)=-1$. Hence the angle between α_{1} and α_{2} is $2 \pi / 3$ and we have the root system A_{2} :

