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Lecture 1.

1. Introduction to Lie algebras

Handout: Information about the course.

Discussion of what Lie algebras are about. Campbell Baker Hausdorff formula.

Note 1.1. Throughout we will use the notation F to denote either of C or R. It is actually possible to define
and discuss Lie algebras over any field but we will not be doing that.

Definition 1.1. Let V and V 0 be F vector spaces. A function m : V � V ! V 0 is called bilinear if for all
u;v1; v2 2 V and �1; �2 2 F we have

m��1v1 ��2v2; u� � �1m�v1; u���2m�v2; u� and,

m�u;�1v1 ��2v2� � �1m�u;v1���2m�u;v2�:

Definition 1.2. An F vector space A is called an algebra if it has a bilinear map

A�A! A
�a;b�, ab

usually called product or multiplication.

Example 1.1. F

Example 1.2. The space of all infinitely differentiable functions from R to C, C1�R;C�, with pointwise multi-
plication of functions.

Example 1.3. The space Mn�C� of all n�n complex matrices with matrix multiplication.

Definition 1.3. A Lie algebra L is an algebra with a product

L� L! L
�x;y�, �x;y�

satisfying

�x;x� � 0

�x; �y; z��� �y; �z;x��� �z; �x;y�� � 0

for all x;y; z 2 L.

Note 1.2. We call �x;y� the (Lie) bracket of x and y . The first of these conditions is called anti-symmetry and
the second is known as the Jacobi identity.

Note 1.3. We can use anti-symmetry to show that �x;y� � ��y;x� for all x;y 2 L.

Example 1.4. L any vector space and �x;y� � 0 for all x;y 2 L. This is a Lie algebra.

Definition 1.4. A Lie algebra is called abelian if �x;y� � 0 for all x;y 2 L.

Example 1.5. Mn�C� is a Lie algebra with the Lie bracket the commutator of matrices: �X; Y� � XY � YX.

Example 1.6. Let V be any vector space and gl�V� be the space of all linear maps f : V ! V and define
�f ; g� � f � g � g � f where f ; g 2 gl�V�. This is a Lie algebra called the general linear algebra of V .

Note 1.4. Sometimes we also write Mn�C� � gl�n;C� � gln�C�.
Example 1.7. For x;y 2 R3 let �x;y� � x �y the vector or cross product. This is a Lie algebra.
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Definition 1.5. Let A be an algebra. Call a linear map d : A ! A a derivation if for all a;b 2 A we have
d�ab� � d�a�b � ad�b�. Denote by Der�A� the set of all derivations.

Note 1.5. Der�A� � gl�A� is a vector subspace.

Definition 1.6. If A is an algebra and B is a vector subspace of A with b1b2 2 B for all b1; b2 2 B then we call
B a subalgebra of A.

Definition 1.7. If L is a Lie algebra and J is a vector subspace with �x;y� 2 J for all x;y 2 J we call J a (Lie)
subalgebra of L.

Proposition 1.8. If A is an algebra then Der�A� is a Lie subalgebra of gl�A�.

Example 1.8. Let A � C1�R3;R� be the space of all infinitely differentiable functions on R3. Let X �
�X1; X2; X3� : R3 ! R3 be a vector field on R3 where each Xi is also infinitely differentiable. If f 2 A de-
fine

X�f� �
3X
i�1

Xi
@f
@xi

:

Then X thought of as a function X : A! A is a derivation. Moreover �X; Y� has components

�X; Y�i �
3X
j�1

�
Xj
@Yi
@xj

� Yj
@Xi
@xj

�
:
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Definition 1.9. Let L be a Lie algebra. A linear map d : L ! L is called a derivation if d��x;y�� � �d�x�;y��
�x;d�y�� for all x;y 2 L.

Lemma 1.10. Let L be a Lie algebra and x 2 L. The map adx : L! L defined by adx�y� � �x;y� is a derivation
and the map ad: L! Der�L� defined by ad�x� � adx is a Lie algebra homomorphism.

Note 1.6. The map ad: L! Der�L� is called the adjoint map or the adjoint representation of L.

Example 1.9. Let sln�C� � gln�C� be the set of all matrices with zero trace. This is a Lie subalgebra of gln�C�
called the special linear algebra.

Example 1.10. The subspaces bn�C� � b�n;C� and nn�C� � n�n;C� of upper triangular and strictly upper
triangular matrices are Lie subalgebras of gln�C�.

1.1. Homorphisms.

Definition 1.11. If L and J are Lie algebras a linear map � : L ! J is a called a Lie algebra homomorphism if
���x;y�� � ���x�;��y�� for all x;y 2 L. If � is a bijection we call it a Lie algebra isomorphism and write
L ’ J.

Exercise 1.1. The adjoint map is a homomorphism of Lie algebras.

Definition 1.12. If I is a subspace of a Lie algebra L we say that I is an ideal if �x;y� 2 I for all x 2 L and
y 2 I.

Lemma 1.13. The kernel of a homomorphism of Lie algebras is an ideal and the image is a subalgebra.

Example 1.11. The kernel of the adjoint map of L is the centre of L,

Z�L� � fx 2 L j �x;y� � 08y 2 Lg

Example 1.12. The image of the adjoint map is the subalgebra of inner derivations IDer�L� � Der�L�.

Definition 1.14. If A and B are subspaces of a Lie algebra L we define

�A; B� � spanf�a; b� j a 2 A;b 2 Bg:
and

A� B � fa� b j a 2 A;b 2 Bg
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Note 1.7. If z 2 �A; B� then there exist x1; : : : ; xr 2 A and y1; : : : ; yr 2 B such that

z �
rX
i�1

�xi; yi�

Proposition 1.15. If A and B are ideals in a Lie algebra L then so also are �A; B�, A� B and A\ B.

Example 1.13. If L is a Lie algebra then L0 � �L; L� is an ideal called the derived algebra of L.

Lecture 3.

Proposition 1.16. The subalgebra of inner derivations IDer�L� is an ideal in Der�L�.

Proposition 1.17. If I � L is an ideal in a Lie algebra consider the quotient vector space L=I and define a
bracket operation by �x� I; y � I� � �x;y�� I. This is well-defined and makes L=I a Lie algebra and the linear
surjective map L! L=I which sends x to x � I is a Lie algebra homomorphism.

Note 1.8. We call the map L! L=I the (canonical) projection.

Proposition 1.18. A subset I � L is an ideal if and only if it is the kernel of a Lie algebra homomorphism.

Theorem 1.19 (Isomorphism theorems).

a) Let  : L1 ! L2 be a homomorphism between Lie algebras. Then ker��� � L1 is an ideal, im��� � L2 a
subalgebra and there is an isomorphism

�̄ : L1=ker� �! im� �
x � ker� �,  �x�

b) If I and J are ideals in a Lie algebra L then �I � J�=I � I=I \ J.
c) If I � J are ideals of L then J=I is an ideal of L=I and �L=I�=�J=I� � L=J.

1.2. Direct sums.

Proposition 1.20. If L1 and L2 are Lie algebras let L � L1 � L2 and define a map L� L! L by letting

��x1; x2�; �y1; y2��, ��x1; y1�; �x2; y2��

for all x1; y1 2 L1 and x2; y2 2 L2. This defines a Lie bracket making L � L1 � L2 into a Lie algebra which we
call the direct sum of L1 and L2.

Proposition 1.21. Suppose a Lie algebra L has ideals I1 and I2 such that L � I1 � I2 and I1 \ I2 � 0 then the
map

I1 � I2 ! L
�x1; x2�, x1 � x2

is an isomorphism of Lie algebras.

Note 1.9. If I and J are ideals in L then �I; J� � I \ J.

Lecture 4.

1.3. Ideals and homomorphisms.

Lemma 1.22. Let � : L! J be an homomorphism of Lie algebras. Then

(1) If I � J is an ideal then ��1�I� � L is an ideal.
(2) If � is surjective and I � L is an ideal then ��I� � J is an ideal

Proposition 1.23. Let I � L be an ideal and consider � : L! L=I. Then the following is a bijection:

fJ j J is an ideal in L and I � Jg ! fK j K is an ideal in L/Ig
J , J=I



4 LIE ALGEBRAS IV

2. Low-dimensional Lie algebras

We classify all complex Lie algebras L with dim�L� � 3. Note that in each dimension there is a unique
abelian Lie algebra. Also if L is not abelian then L L0 � 0 and Z�L� � L.

Case 1: dim�L� � 1. If dim�L� � 1 then L is the unique one-dimensional abelian Lie algebra.

Case 2: dim�L� � 2. If L is not abelian there is a two-dimensional Lie algebra with basis fx;yg and Lie
bracket determined by �x;y� � x.

Theorem 2.1. If L is a two-dimensional, non-abelian, complex Lie algebra then L is isomorphic to the two-
dimensional Lie algebra described above.

Case 3: dim�L� � 3, L0 � Z�L� and dim�L0� � 1.

Theorem 2.2. Up to isomorphism the Lie algebran�3;C� of all strictly upper-triangular, three by three matrices
is the unique three-dimensional Lie algebra with L0 one-dimensional and L0 � Z�L�. This is also known as the
Heisenberg Lie algebra. It has a basis

f �

2640 1 0
0 0 0
0 0 0

375 ; g �
2640 0 0

0 0 1
0 0 0

375 ; and z �

2640 0 1
0 0 0
0 0 0

375
with �f ; g� � z 2 Z�L�.
Example 2.1. Let L1 be the one-dimensional Lie algebra and L2 the two-dimensional, non-abelian Lie-algebra
and let L � L1 � L2. Then L0 � 0� L02 and Z�L� � L1 � 0. Notice that L0 is one-dimensional and not contained
in Z�L�.

Lecture 5.

Theorem 2.3. The Lie algebra in Example ?? is the unique (up to isomorphism) three-dimensional Lie algebra
L with L0 one-dimensional and L0 not contained in Z�L�.

2.1. Review of some linear algebra. Trace of a linear map Recall that if X and Y are matrices then tr�XY� �
tr�YX so that tr��X; Y�� � 0 and if G is invertible then tr�GXG�1� � tr�G�1GX� � tr�X�. Let X : V ! V be a
linear map and V a finite-dimensional vector space. If we choose a basis for X we can turn it into a matrix M
and define tr�X� � tr�M�. This is actually independent of the choice of basis because changing the basis will
replace M by GMG�1 for some invertible matrix G. If Y : V ! V then we have tr��X; Y�� � 0.

Jordan canonical form For a 2 N and � 2 C define the a� a matrix

Ja��� �

2666666664

� 1 0 � � � 0 0
0 � 1 � � � 0 0
0 0 � � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � � 1
0 0 0 � � � 0 �

3777777775

Lecture 6.

Theorem 2.4. Let X : V ! V be a linear map and V a finite-dimensional complex vector space. Then there is a
basis of V , a1; a2; : : : ; ar and �1; �2; : : : ; �r such that X has the form of a block diagonal matrix266664

Ja1��1� 0a1a2 � � � 0a1ar
0a2a1 Ja2��2� � � � 0a2ar

...
...

. . .
...

0ara1 0ara2 � � � Jar�r

377775
where 0pq is a p � q matrix of zeroes.
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Lemma 2.5. Let L be a three-dimensional complex Lie algebra dim�L0� � 2. Choose a basis fy;zg of L and
extend it to a basis of L with x. Then

(1) L0 is abelian
(2) adx : L0 ! L0 is an isomorphism

Proposition 2.6. Let L be a three-dimensional complex Lie algebra with dim�L0� � 2. Choose a basis fy;zg of
L and extend it to a basis of L with a vector x. Assume that adx : L0 ! L0 is diagonalizable. Then after rescaling
x it has the matrix form "

1 0
0 �

#
for 0 � � 2 C. Then each choice of � defines a Lie algebra L� satisfying the hypothesis of the proposition.
Moreover L� is isomorphic to L� if and only if � � � or � � 1=� .

Proposition 2.7. There is a unique (up to isomorphism) three-dimensional complex Lie algebra L satisfying the
following conditions. The commutator subalgebra has dimension dim�L0� � 2 and if we choose a basis fy;zg
of L0 and extend it to a basis of L with x then adx : L0 ! L0 is not diagonalizable.

Example 2.2. L � sl�2;C� has a basis given by

h �
"

1 0
0 �1

#
e �

"
0 1
0 0

#
and f �

"
0 0
1 0

#
with �e; f � � h, �h; e� � 2e and �h; f � �2f . Therefore the commutator algebra of sl�2;C� is just sl�2;C�.

Lemma 2.8. Let L be a three-dimensional C Lie algebra such that L0 � L. Then

a) If x 2 L with x � 0 then adx : L! L has rank two.
b) 9h 2 L such that adh : L! L has an eigenvector with non-zero eigenvalue.

Proposition 2.9. sl�2;C� is the unique complex Lie algebra of dimension three which is equal to its commutator
subgroup.

Summary: Non-abelian complex Lie algebras L with dim�L� � 3.

dim�L� � 1 : None just the abelian Lie algebra.

dim�L� � 2 : Just one up to isomorphism. L2 � spanfx;yg with �x;y� � x.

dim�L� � 3, dim�L0� � 1, L0 � Z�L� : Heisenberg Lie algebra

dim�L� � 3, dim�L0� � 1, L0 ˘ Z�L� : Only the direct sum of the one-dimensional Lie algebra and the non-
abelian two-dimensional Lie algebra.

dim�L� � 3, dim�L0� � 2 : Infinitely many. For each � 2 C there is L� for with L� ’ L� if and only if � � � or
� � 1=�.

dim�L� � 3, dim�L0� � 3 : Only sl�2;C�.

Lecture 7.

3. Solvable Lie algebras

Lemma 3.1. Let I be an ideal of a Lie algebra L. Then L=I is abelian if and only if L0 � I.
Definition 3.2. If L is a Lie algebra the derived series is the sequence of ideals L�1�; L�2�; : : : in L defined by
L�1� � L0 � �L; L�, L�2� � �L�1�; L�1�, etc.

Note 3.1. Notice that we have
L � L�1� � L�2� � : : :

and L=�L; L� is abelian so L�k�=L�k�1� is abelian.
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Definition 3.3. A Lie algebra L is called solvable if there is some m � 0 with L�m� � 0.

Example 3.1. Solvable Lie algebras include the Heisenberg Lie algebra, the Lie algebra of upper triangular
matrices and any two-dimensional Lie algebra. sl�2;C� is not solvable.

Lemma 3.4. If L has a collection of ideals

L � I1 � I2 � � � � � Im � 0

and Ik=Ik�1 is abelian for all 1 �m� 1 then L is solvable.

Lemma 3.5. If ’ : L! J is a surjective homomorphism then ’�L�k�� � J�k� for all k.

Lemma 3.6. Let L be a Lie algebra. Then

a) If L is solvable so also is any subalgebra of L or homomorphic image of L.
b) If L has an ideal I with I and L=I solvable then L is solvable.
c) If I and J are solvable ideals of L so also is I � J.

3.1. The radical.

Corollary 3.7. If L is finite dimensional it has a unique solvable ideal containing all other solvable ideals.

Definition 3.8. If L is finite dimensional we call the unique largest solvable ideal the radical of L and denote
it by rad�L�.

Definition 3.9. A non-zero finite dimensional Lie algebra L is called semisimple if rad�L� � 0.

Lecture 8.

Example 3.2. sl�2;C� is semisimple.

Lemma 3.10. If L is a Lie algebra then L= rad�L� is semisimple.

The Plan: We want to classify semisimple Lie algebras. First we will show that every semisimple Lie algebra
is the direct sum of simple Lie algebras were:

Definition 3.11. A Lie algebra is simple if it is no ideals other than itself and zero and it is not abelian.

Then the simple Lie algebras are exactly the following: An � sl�n;C� for n � 1, Bn � so�2n� 1;C� for n �,
Cn � sp�n;C�, for n � 3, Dn � so�2n;C� for n � 4 and E6, E7, E8, F4 and G2.

Construction of classical Lie algebras. The Lie algebras An, Bn, Cn and Dn are called classical Lie algebras
and the latter three series are examples of the following construction. Let S 2 gl�n;C� and define

glS�n;C� � fx 2 gl�n;C� j xtS � �Sxg:

Then gls�n;C� is a Lie algebra. We

so�2n;C� � glS�2n;C� for S �
"

0nn Inn
Inn 0nn

#
(3.1)

so�2n� 1;C� � glS�2n� 1;C� for S �

264 1 01n 01n
0n1 0nn Inn
0n1 Inn 0nn

375(3.2)

sp�2n;C� � glS�2n;C� for S �
"

0nn Inn
�Inn 0nn

#
(3.3)

Lecture 9.
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3.2. Nilpotent Lie algebras.

Definition 3.12. If L is a Lie algebra we define the lower central series Lk by

L1 � L0; L2 � �L; L1�; L3 � �L; L2�; : : : :

Note 3.2. Each Lk is an ideal and L � L1 � L2 � : : : . The name comes from the fact that Lk=Lk�1 � Z�L=Lk�1�.

Definition 3.13. A Lie algebra L is called nilpotent if Lk � 0 for some k � 1.

Note 3.3. As L�k� � Lk a nilpotent Lie algebra is solvable. The converse is not true as b�n;C� is solvable but
not nilpotent.

Lemma 3.14. Let L be a Lie algebra. Then

a) If L is nilpotent then any subalgebra of L is nilpotent.
b) If L=Z�L� is nilpotent then L is nilpotent.

Note 3.4. Note that we can have I a nilpotent ideal in L and L=I nilpotent but L not nilpotent. For example
consider L the non-abelian two-dimensional Lie algebra spanned by fx;yg with �x;y� � x and I the span of
x.

4. Subalgebras of gl�V�

4.1. Nilpotent maps.

Definition 4.1. We say that x 2 gl�V� is nilpotent if there is an m such that xm � 0.

Note 4.1. Let V be a finite-dimensional vector space and L � gl�V� be a subalgebra. If x 2 L note that xm
may not be in L for m > 1.

Lemma 4.2. Let L be a Lie subalgebra of gl�V� and x 2 L. If x is nilpotent so also is ad�x� 2 gl�L�.

Definition 4.3. A weight for a Lie subalgebra A � gl�V� is a linear map � : A! F such that

V� � fv 2 V j av � ��a�v8a 2 Ag � 0:

Note 4.2. We call V� the � weight space.

Definition 4.4. If x 2 gl�V� and W is a subspace of V then we define

x�W� � fx�w� j w 2 Wg:
We say that W is invariant under x if x�W� � W .

Definition 4.5. If L � gl�V� is a Lie subalgebra and W � V we call W L-invariant if W is x invariant for all
x 2 L.

Lemma 4.6. Suppose A � L is an ideal in a Lie subalgebra L of gl�V�. Let

W � fv 2 V j av � 08a 2 Ag
then W is L-invariant.

Lecture 10.

Lemma 4.7. (Invariance Lemma) Assume F � R or C. Let L be a Lie subalgebra of gl�V� and A � L an ideal.
Let � : A! F be a weight of A. Then the weight space V� is L-invariant.

If W � V denote by glW �V� the subalgebra of all x : V ! V such that x�W� � W . For such x there is an
induced linear map x̄ : V=W ! V=W and hence there is a map

glW �V�! gl�V=W�
which is a homomorphism of algebras and hence Lie algebras.
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5. Lie and Engel’s Theorems

Theorem 5.1. (Engel’s Theorem) Let V be a vector space and L � gl�V� a Lie subalgebra such that for all x 2 L
we have x nilpotent. Then V has a basis in which every x 2 L is represented by a strictly upper-triangular
matrix.

Lecture 11.

Proposition 5.2. Suppose L is a Lie subalgebra of gl�V� such that for all x 2 L we have x nilpotent. Then there
is a v 2 V , v � 0 such that xv � 0 for all x 2 L.

Theorem 5.3. (Second version of Engel’s theorem) A Lie algebra L is nilpotent if and only if or all x 2 L we
have ad�x� : L! L nilpotent.

Lecture 12.

Theorem 5.4. (Lie’s theorem) Let V be a complex vector space and L a solvable Lie subalgebra of gl�V�. Then
V has a basis in which every x 2 L is represented by an upper-triangular matrix.

Lemma 5.5. If x 2 gl�V� for V a complex vector space then x has an eigenvector.

Proposition 5.6. Let V be a complex vector space and L a solvable Lie subalgebra of gl�V�. Then there is a
v 2 V which is a common eigenvector for all x 2 L.

6. Some representation theory

Definition 6.1. A representation  of a Lie algebra L is a homomorphism  : L ! gl�V� for some finite-
dimensional vector space V .

Definition 6.2. Let L be a Lie algebra. An L-module is a vector space V and a map

L� V ! V
�x;v�, xv

which satisfies

��x � �y�v � ��xv�� ��yv�
x��v � �w� � ��xv�� ��xw�

�x;y�v � x�yv��y�xv�
for all x;y 2 L, v;w 2 V and �;� 2 F.

Note 6.1. If  : L ! gl�V� is a representation then defining �x;v� ,  �x�v makes V into an L module.
Conversely if V is an L-module defining  �x� : V ! V by  �x��v� � xv defines a representation.

6.1. Submodules and factor modules.

Definition 6.3. If V is an L-module we say that a subspace W of V is an L-submodule or just a submodule if
W is L-invariant. That is if x�W� � W for all x 2 L.

Note 6.2. Note that if W is a submodule of V then W is an L-module in its own right.

Example 6.1. Make L into an Lmodule using the adjoint representation. Then a subspace I � L is a submodule
if and only if it is an ideal.

If W is a submodule of an L-module V we can make V=W into an L-module by

L� V=W ! V=W
�x;v �W�, xv �W

Exercise 6.1. Check this makes V=W into an L-module.
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Definition 6.4. The space V=W with the definition as an L-module give above is called a quotient or factor
module.

Example 6.2. If I is an ideal then

L� L=I ! L=I
�x;y � I�, �x;y�� I

makes L=I an L-module.

Lecture 13.

6.2. Irreducible and indecomposable modules.

Definition 6.5. An L-module V is called irreducible if the only submodules of V are V and 0.

Example 6.3. If V is 1-dimensional then V is irreducible.

Example 6.4. If L is solvable and V is an irreducible module then V is one-dimensional.

Definition 6.6. If U and W are submodules of an L module V and V � U �W we say that V is the direct sum
of U and W .

Definition 6.7. An L-module V is called indecomposable if we cannot find submodules U � 0 � W with
V � U �W .

Note 6.3. Note that if V is irreducible then V is indecomposable but the reverse is not usually the case.

Definition 6.8. An L-module V is called completely reducible if it has irreducible submodules S1; : : : Sr and
V � S1 � � � � � Sr .

Example 6.5. If L � d�n;F� and Si � Cei then V � Cn � S1 � � � � � Sn is completely reducible.

Example 6.6. If L � b�n;F� then each

Wi � f�x1; x2; : : : ; xi;0; : : : ;0� j x1; : : : ; xi 2 Fg � Fn

is a submodule. In fact these are the only submodules and hence L is indecomposable but not irreducible.

6.3. Homomorphisms.

Definition 6.9. Let V andW be L-modules. A linear map � : V ! W is an L-module homomorphism if ��xv� �
x��v� for all x 2 L and v 2 V . If � is bijective it is called an L-module isomorphism and we write V ’ W .

Note 6.4. If  V : L ! gl�V� and  W : L ! gl�W� are two representations then � : V ! W is an L-module
homomorphism if and only if for all x 2 L we have � V �x� �  W �x��.

Note 6.5. Because � : V ! W is linear we know that ker��� and im��� are subspaces of V and W respectively.

Exercise 6.2. If � : V ! W is a homomorphism of L-modules show that ker��� and im��� are submodules of
V and W respectively.

Theorem 6.10. (Isomorphism theorem) Let L be a Lie algebra.

a) If � : V ! W is an L-module homomorphism then L=ker��� is isomorphic to im���.
b) IfU andW are submodules of and L-module V thenU�W andU\W are also submodules and �U�W�=W ’
U=U \W

c) If U and W are submodules of and L-module V with V � U then W=U is a submodule of V=U and
�V=U�=�W=U� ’ V=W .

Proposition 6.11. Let W be a submodule of V then the following map is a bijection:

fU j U is a submodule of V and W � Ug ! fS j S is a submodule of V/Wg
U , U=W
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6.4. Schur’s Lemma.

Lemma 6.12. Let L be a complex Lie algebra and S a finite-dimensional, irreducible L-module. A map � : S ! S
is an L-module homomorphism of and only if � � �1S for some � 2 C where 1S is the identity map S ! S.

Lemma 6.13. Let L be a complex Lie algebra and V and irreducible L-module. Let z 2 Z�L� then there is a
� 2 C such that for all v 2 V we have zv � �v .

Lecture 14.

7. Representations of sl�2;C�

Definition 7.1. For d � 0 define Vd to be the complex vector space of all complex, homogeneous polynomials
of degree d.

Note 7.1. Vd has basis the monomials Xd; Xd�1Y ; : : : ; XYd�1; Yd and hence has dimension d� 1.

We define a representation  : sl�2;C� ! gl�Vd� by giving the action on the standard basis of sl�2;C� as
follows.

 �e� � X @
@Y
;  �f� � Y @

@X
and  �h� � X @

@X
� Y @

@Y
:

Note 7.2. The action on a monomial is given by

 �e��XaY b� � bXa�1Y b�1;  �f��XaY b� � aXa�1Y b�1 and  �h��XaY b� � �a� b�XaY b:
Theorem 7.2. With the above definition  : sl�2;C�! gl�Vd� is a representation.

Note 7.3. With respect to the basis Xd; Xd�1Y ; : : : ; XYd�1; Yd the matrices of  �e�,  �f� and  �h� are given
by

 �e� �

26666664
0 1 0 � � � 0
0 0 2 � � � 0
...

...
...

. . .
...

0 0 0 � � � d
0 0 0 � � � 0

37777775 ;  �f� �

26666664
0 0 � � � 0 0
d 0 � � � 0 0
0 d� 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 1 0

37777775
and

 �h� �

26666664
d 0 � � � 0 0
0 d� 2 � � � 0 0
...

...
. . .

...
...

0 0 � � � �d� 2 0
0 0 � � � 0 �d

37777775
Example 7.1. See handout where d � 0, d � 1 and d � 2 are discussed.

Lecture 15.

Handout: Examples of sl�2;C� representations
Handout: Conventions for matrices

Theorem 7.3. The sl�2;C� module Vd is irreducible.

Lemma 7.4. Suppose V is an sl�2;C� module and v 2 V is an eigenvector of h of eigenvalue �. Then

(a) ev � 0 or ev is an eigenvector of h of eigenvalue �� 2
(b) fv � 0 or fv is an eivenvector of h of eigenvalue �� 2

Lemma 7.5. Let V be a finite dimensional sl�2;C� module. Then V contains an eigenvector w of h such that
ew � 0.

Theorem 7.6. If V is a finite dimensional irreducible sl�2;C� module then V is isomorphic to one of the Vd.
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Corollary 7.7. If V is a finite dimensional sl�2;C� module and w 2 V is an h eigenvector such that ew � 0
then hw � dw for some integer d and the subspace generated by w is isomorphic to Vd.

Note 7.4. A vector w of the type in the corollary is called a highest weight vector.

Theorem 7.8 (Weyl’s Theorem). Let L be a complex, semisimple Lie algebra. Then every finite-dimensional
representation of L is completely reducible.

Lecture 16.

Handout: Non-degenerate bilinear forms
Handout: Killing form examples

8. Cartan’s criterion for semisimplicity

Theorem 8.1 (Jordan decomposition). If x 2 gl�V� for a complex vector space V then there exist unique
d;n 2 gl�V� such that

(i) x � d�n
(ii) d is diagonalizable
(iii) n is nilpotent
(iv) �d;n� � 0.

Definition 8.2. We call the decomposition x � d � n the Jordan canonical form for x or the Jordan decom-
position of x.

Example 8.1.

x �

264 � 1 0
0 � 0
0 0 �

375 d �

264 � 0 0
0 � 0
0 0 �

375 n �

264 0 1 0
0 0 0
0 0 0

375
Lemma 8.3. Let x 2 gl�V� have Jordan decomposition x � d�n then

(a) There exists a polynomial p�t� such that p�x� � d.
(b) Choose a basis for V so that d is diagonal. Define d̄ 2 gl�V� to be the linear map whose matrix is the

complex conjugate to the matrix of d. Then there is a polynomial q�t� such that q�x� � d̄.

Lemma 8.4. Let x 2 gl�V� have Jordan decomposition x � d � n then ad�x� has Jordan decomposition
ad�x� � ad�d�� ad�n�.

Lemma 8.5. Let V be a complex vector space and L � gl�V� a Lie subalgebra. Then for all x 2 L0 and for all
y 2 L we have tr�xy� � 0.

Proposition 8.6. Let V be a complex vector space and L � gl�V� a Lie subalgebra. If tr�xy� � 0 for all x;y 2 L
then L is solvable.

Exercise 8.1. If x;y; z 2 gl�V� then tr��x;y�z� � tr�x�y; z��.

Theorem 8.7. Let L be a complex Lie algebra. Then L is solvable if and only if tr�ad�x� ad�y�� � 0 for all x 2 L
and y 2 L0.
Definition 8.8. A bilinear form on L is map

g : L� L! F

such that

g��x � �y; z� � �g�x;y�� �g�y; z�
g�x;�y � �z� � �g�x;y�� �g�x; z�

for all x;y; z 2 L and �;� 2 F.

Definition 8.9. A bilinear form g : L� L! F is symmetric if g�x;y� � g�y;x� for all x;y 2 L.
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Definition 8.10. A symmetric, bilinear form g : L � L ! F is invariant if g�x; �y; z�� � g��x;y�; z� for all
x;y; z 2 L.

Definition 8.11. Let L be a complex Lie algebra. The Killing form is the map � : L�L! F defined by ��x;y� �
tr�ad�x� ad�y�� for all x;y 2 L.

Lemma 8.12. The Killing form is bilinear, symmetric and invariant.

Theorem 8.13 (Cartan’s First Criterion). A complex Lie algebra L is solvable if and only if the Killing form
satisfies ��x;y� � 0 for all x 2 L and y 2 L0.

Lecture 17.

Lemma 8.14. Let I be an idea in a Lie algebra L. Let � be the Killing form for L and �I the Killing form for I.
Then if x;y 2 I we have ��x;y� � �I�x;y�>

Definition 8.15. If � is a symmetric bilinear form on a vector space V and W is a subspace of V we define

W? � fv 2 V j ��v;w� � 08w 2 Wg:

Definition 8.16. A symmetric bilinear form on a vector space V is called non-degenerate if V? � 0.

Lemma 8.17. If � is a non-degenerate, symemtric bilinear form on V and W � V then dim�W� � dim�W?� �
dim�V�. (Proved in handout.)

Example 8.2. Consider C2 with the symmetric bilinear form �z;w� � z0w0 � z1w1 and let W be the span of
w � �1; i�. Then as �w;w� � 0 we have W? � W and so it is not true that W \W? � 0.

Lemma 8.18. If I is an ideal in a Lie algebra L then I? is an ideal.

Theorem 8.19 (Cartan’s second criterion). A complex semisimple Lie algebra is semisimply if and only if its
Killing form is non-degenerate.

Lemma 8.20. If I is an ideal in a complex, semisimple Lie algebra L with 0 � I � L then L � I � I? and I is also
semisimple.

Theorem 8.21. Let L be a complex Lie algebra. Then L is semisimple if and only if there exist simple ideals
L1; : : : ; Lr � L such that L � L1 � � � � � Lr .

Lemma 8.22. If L is semisimple and I is an ideal of L then L=I is semisimple.

Lecture 18.

8.1. Derivations of semisimple Lie algebras.

Proposition 8.23. If L is a finite-dimensional complex, semisimple Lie algebras then ad�L� � Der�L�.

8.1.1. Abstract Jordan decomposition.

Proposition 8.24. Let L be complex Lie algebra. Suppose � is a derivation of L and � � � � � is its Jordan
decomposition then � and � are derivations of L.

Theorem 8.25. Let L be a complex, semisimple Lie algebra. Then each x 2 L can be written uniquely as
x � d � n where ad�x� is diagonalizable, ad�n� is nilpotent and �d;n� � 0. Moreover if �y;x� � 0 then
�y;d� � �y;n� � 0.

Definition 8.26. Let x 2 L a complex, semisimple Lie algebra. The decomposition x � d�n in the preceding
theorem is called the abstract Jordan decomposition of x.

Theorem 8.27. Let L be a complex semisimple Lie algebra and � : L ! gl�V� be a representation. Suppose x
has abstract Jordan decomposition x � d � n then the Jordan decomposition of ��x� is ��x� � ��d� � ��n�.
(Proof omitted.)
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9. The root space decomposition

Example 9.1. Consider sl�n;C� and let H � sl�n;C� be the subalgebra of diagonal matrices. If h is a diagonal
matrix with ith diagonal element hi let � : H ! C be the map �i�h� � hi. We have �h; Eij� � �hi � hj�Eij �
��i � �j��h�Eij . Thus �i � �j is a weight of H with weight space

Lij � span�Eij�

and
sl�n;C� � H �

M
i�j
Lij :

Definition 9.1. Let x 2 L a complex, semisimple Lie algebra. Then x is called semisimple if the abstract Jordan
decomposition of x is x � d�n with n � 0.

Definition 9.2. Let L be a complex, semisimple Lie algebra and H � L an abelian Lie algebra all of whose
elements are semisimple. Let Ø be the set of all non-zero weights � 2 H� of H. That is � 2 Ø if and only if

L� � fx 2 L j �h;x� � ��h�xg � 0:

As we can simultaneously diagonalise all the elements of H (see appendix of textbook), we have

L � L0 �
M
�2ØL�

where
L0 � CL�H� � fx 2 L j �h;x� � 08h 2 Hg:

Lemma 9.3. In the situation above if �;� 2 H� then

(a) �L�; L�� � L���.
(b) If �� � � 0 then ��L�; L�� � 0, that is if x 2 L� and y 2 L� then ��x;y� � 0.
(c) The restriction of the Killing form to L0 is non-zero.

Lecture 19.

9.1. Cartan subalgebras.

Definition 9.4. Let L be a complex, semisimple Lie algebra. A Lie subalgebra H � L is called a Cartan
subalgebra of L (CSA) if it is abelian, all its elements are semisimple and it is maximal with respect to these
two properties.

Note 9.1. Being maximal means that if H0 is abelian and has all its elements semisimple and H � H0 then
H � H0.

Note 9.2. While Cartan subalgebras are not unique it turns out that their dimension is always the same. This
is called the rank of L

Example 9.2. The diagonal matrices in sl�n;C� form a Cartan subalgebra.

Example 9.3. If g is an n by n complex matrix of determinant one then the subalgebra of sl�n;C� consisting
of all matrices X for which gXg�1 is diagonal is a Cartan subalgebra.

Proposition 9.5. If H is a Cartan subalgebra in a complex, semisimple Lie algebra L then CL�H� � H.

9.2. Root space decomposition.

Definition 9.6. If H is a CSA the weight space decomposition becomes

L � H �
M
�2ØL�:

We call elements of Ø roots and the L� root spaces.
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9.3. Subalgebras isomorphic to sl�2;C�.

Lemma 9.7. Suppose � 2 Ø and x 2 L� with x � 0. Then �� 2 Ø and there is a y 2 L�� such that
spanfx;y; �x;y�g is a Lie subalgebra of L isomorphic to sl�2;C�.

Proposition 9.8. Let V be a complex vector space and x;y : VtoV linear maps such that �x; �x;y�� � 0 �
�y; �x;y��. Then �x;y� is nilpotent.

Note 9.3. Given � 2 Ø and x and y as in the Lemma we let e� � x and rescale y to get f� such that
h� � �e�; f�� satisfies ��h�� � 2. Then h , h�, e , e� and f , f� defines an isomorphism from sl�2;C� to
spane�; h�; f�. We denote spane�; h�; f� to sl���.

9.4. Root strings and eigenvalues.

Note 9.4. Define � : H ! H� by ��h��k� � ��h; k� for all h;k 2 H. Then � is an isomorphism. Define t� 2 H
by ��ta� � � or k�t�; k� � ��k� for all k 2 K.

Lemma 9.9. Let � 2 Ø. If x 2 L� and y 2 L� then �x;y� � ��x;y�t�. In particular h� is a multiple of t�>

Lemma 9.10. If M � L is an sl��� submodule then the eigenvalues of h� acting on M are integers.

Lecture 20.

Proposition 9.11. Let � 2 Ø. Then dim�L��� � 1 and n� 2 Ø if and only if n � �1.

Proposition 9.12. Suppose �;� 2 Ø, � � ��.

(a) ��h�� 2 Z
(b) 9r ; q 2 Z such that if k 2 Z then �� k� 2 Ø if and only if �r � k � q and r � q 2 ��h��>
(c) �� ��h��� 2 Ø.

9.5. Cartan subalgebra as an inner product space.

Lemma 9.13.

(i) If h 2 H and h � 0 then 9� 2 H� such that ��h� � 0.
(ii) span�Ø� � H�

Lemma 9.14. For each � 2 Ø.

(1)

t� �
h�

��e�; f��
and h� �

2t�
��t�; t��

:

(2)
��t�; t����h�; h�� � 4:

Lecture 21.

Corollary 9.15. If � and � are roots then ��h�; h�� 2 Z and ��t�; t�� 2 Q.

Lemma 9.16. If �1; : : : ; �r is a basis of H� made up of roots and � is a root then � �
Pr
i�1 qi�i with qi 2 Q.

Proposition 9.17. If �1; : : : ; �r is a basis of H� made up of roots then

spanRf� j � 2 Øg � spanRf�1; : : : ; �rg
where spanR means the real span.

Definition 9.18. Define a real vector space E by

E � spanRf� j � 2 Øg:
Definition 9.19. We define a bilinear symmetric form � ; � on H� by making it equal to the Killing form under
the isomorphism �. In other words ��;�� � ��t�; t��.
Proposition 9.20. The bilinear symmetric form � ; � on E is an inner product.
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10. Root systems

Note 10.1. Let E be a finite, dimensional real vector space with inner product � ; �. If 0 � v 2 E recall that sv ,
the reflection in the hyperspace orthogonal to v satisfies

sv�x� � x �
2�x;v�
�v;v�

x

for all x 2 X. We define

hx;vi � 2�x;v�
�v;v�

for all x;v 2 V .

Definition 10.1. A subset R of a real inner product space E is called a root system if

(R1) R is finite, spans E and 0 � R.
(R2) If � 2 R then �� 2 R if and only if � � �1.
(R3) If � 2 R then s��R� � R.
(R4) If �;� 2 R then h�;�i 2 Z.

Note 10.2. The elements of R are called roots.

Proposition 10.2. If L is a complex semisimple Lie algebra and H is a Cartan subalgebra with roots Ø � H�
then Ø � E is a root system.

Note 10.3. It turns out that every root system arises in this way.

Example 10.1. See the handout on sl�n;C�.

Lemma 10.3 (Finiteness Lemma). Suppose R is a root system. Then if �;� 2 R with � � �� then

h�;�ih�;�i 2 f0;1;2;3g:
Note 10.4. Assume �;� 2 R with � � �� and ��; �� � ��;��. Then �;� must satisfy one of the following:

h�;�i h�;�i cos��� � h�;�i
h�;�i

0 0 0 �=2 indeterminate
1 1 1/2 �=3 1
-1 -1 -1/2 2�=3 1
1 2 1=

p
2 �=4 2

1 -2 �1=
p

2 3�=4 2
1 3

p
3=2 �=6 3

1 -3 �
p

3=2 5�=6 3

Proposition 10.4. Let �;� 2 R then

(a) If the angle between � and � is strictly obtuse then �� � 2 R.
(b) If the angle between � and � is strictly acute then �� � 2 R.

Lecture 22.

Handout: Root system of sl�n;C�
Handout: Two-dimensional root systems
Handout: Dynkin diagrams

Definition 10.5. An isomorphism between two root systems R � E and R0 � E0 is a linear isomorphism
’ : E ! E0 such that

(a) ’�R� � R0
(b) 8�;� 2 R we have h�;�i � h’���;’���i
Note 10.5. This shows that if R � E and we change the inner product on E by multiplying it by a positive
constant then R is still a root system isomorphic to the original R.
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Note 10.6. We will not prove it but if we vary the Cartan subalgebra of a complex, semisimple Lie algebra then
the root systems that arise are all isomorphic.

Example 10.2. Handout about two-dimensional root systems.

Definition 10.6. A root system R is called irreducible if it cannot be written as a disjoint union R � R1 [ R2

where neither R1 or R2 is empty and ��1; �2� � 0 for all �1 2 R1 and �2 2 R2.

Lemma 10.7. Let R be a root system then we can write it as a disjoint union R � R1 [ � � � [ Rk where each Ri
is an irreducible root system in Ei � span�Ri� and E is the orthogonal direct sum of the Ei.

Note 10.7. A Lie algebra is simple if and only if its root system is irreducible. Moreover if L � L1 � � � � � Lk
where each Li is simple then the root system R of L can be written as a disjoint union R � R1 [ � � � [ Rk, as
in the Lemma above, and Ri is the root system of Li.

10.1. Bases for root systems.

Definition 10.8. If R is a root system a subset B � R is called a base for R if

(B1) B is a basis for E.
(B2) For every � 2 R we have b �

P
�2B k�� where k� 2 Z and every non-zero coefficient k� has the same

sign.

Proposition 10.9. Every root system has a base.

Note 10.8. Although we won’t prove it every base arises by the construction in the proof of the proposition.

Note 10.9. Bases are not unique but as they form a basis for E they must all have the same number of elements.

Definition 10.10. We call the elements of a base for a root system simple roots.

Lecture 23.

Definition 10.11. If we have chosen a base B for a root system then the non-zero roots of the form b �P
�2B k�� with every k� non-negative are called positive and denoted R�.

Definition 10.12. The Weyl group of a root system is the group generated by the root reflections.

Lemma 10.13. The Weyl group is finite.

Theorem 10.14. If B and B0 are two bases for a root system R then there is a unique element of the Weyl group
w such that w�B� � B0. Moreover if B is a base then w�B� is also a base for any w in the Weyl group. (Proof
omitted.)

10.2. Cartan matrix and Dynkin diagram of a root system.

Definition 10.15. Let R be a root system with base B � f�1; : : : ; �‘g. Then the Cartan matrix C � �Cij� of R
with respect to B is defined by Cij � h�i; �ji.

Note 10.10. Notice that the Cartan matrix is unique up to conjugation by any permutation of the labels of the
elements of the base. It also follows from the fact that all bases are related by a Weyl group transformation
that when we change the base the Cartan is conjugated by the corresponding permutation.

Definition 10.16. Let R be a root system with base B � f�1; : : : ; �‘g. Then the Dynkin diagram of R with
respect to the base B has a node for every simple root and the nodes are joined by

dij � CijCji � h�i; �jih�j ; �ii
edges. If dij > 1 we put an arrow on the edges between nodes �i and �j pointing in the direction of the
smaller simple root.

Note 10.11. Clearly we have Cii � 2. If B is a base and �;� 2 B then ��;�� � 0 as otherwise � � � is a root
which is not possible. So Cij � 0 for all i; j.

Theorem 10.17. A complex semisimple Lie algebra is determined by its Dynkin diagram.
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Theorem 10.18 (Serre’s Theorem). Let C be the Cartan matrix of a root system of rank. Define a Lie algebra
with generators ei, hi and fi for i � 1; : : : ; r where r is the size of the Cartan matrix, subject to the relations

(S1) �hi; hj� � 08i; j
(S2) �hi; ej� � cjiej and �hi; ej� � �cjiej for all i; j
(S3) �ei; fi� � hi8i and �ei; fj� � 08i � j
(S4) �ad�ei�1�Cji�ej� � 0 and �ad�ef �1�Cji�ef � � 0 if i � j.

Then L is a finite dimensional, complex semisimple Lie algebra with Cartan subalgebra spanned by theh1; : : : ; hr
and Cartan matrix C .


