Lie Algebras IV 2008 Non-degenerate bilinear forms

I want to show that if *V* is a finite dimensional vector space with a non-degenerate, symmetric, bilinear form (,) and $W \subset V$ then

 $\dim(W) + \dim(W^{\perp}) = \dim(V)$

First we prove a result that doesn't need the bilinear form. Recall that V^* , the dual space of V is the vector space of all linear maps $\alpha: V \to \mathbb{F}$. If v^1, \ldots, v^n is a basis of V then a linear map $\alpha: V^* \to \mathbb{F}$ is determined by the n numbers $\alpha(v^1), \ldots, \alpha(v^n)$ and any collection of n numbers $\alpha_1, \ldots, \alpha_n$ determines a linear map α by $\alpha(\sum_{i=1}^n x^i v^i) = \sum_{i=1}^n \alpha_i x^i$. It follows that we can define the so-called dual basis ξ^1, \ldots, ξ^n of V^* by requiring that $\xi^j(v^i) = \delta_{ij}$ for all $i, j = 1, \ldots, n$.

Exercise 0.1. Prove that ξ^1, \ldots, ξ^n is a basis of V^* .

If $W \subset V$ we define $W^{\circ} \subset V^*$ by

 $W^{\circ} = \{ \alpha \in V \mid \alpha(w) = 0 \forall w \in W \}.$

We have

Proposition 0.1.

 $\dim(W) + \dim(W^{\circ}) = \dim(V)$

Proof. Let v^1, \ldots, v^r be a basis for W and extend it to a basis v^1, \ldots, v^n of V. Consider the dual basis ξ^1, \ldots, ξ^n . We have that ξ^{r+1}, \ldots, ξ^n are linearly independent and in W° because they are zero when applied to the basis elements of W and hence when applied to any vector in W. We show that they span W° . Let α be in W° and write $\alpha = \sum_{i=1}^n \alpha_i \xi^i$. We have that $\alpha(v^j) = \sum_{i=1}^n \alpha_i \xi^i(v^j) = \alpha_j$. Hence $\alpha_1 = \cdots = \alpha_r = 0$ so that $\alpha = \sum_{i=r+1}^n \alpha_i \xi^i$ as required.

Returning to a symmetric, bilinear form we define a map $\phi: V \to V^*$ by $\phi(v)(w) = (v, w)$.

Exercise 0.2. Show that ϕ is a linear map and ker(ϕ) = V° .

It follows that if the form is non-degenerate then $ker(\phi) = 0$ and that ϕ is an isomorphism on dimension grounds.

Proposition 0.2. If $W \subset V$ then $\phi(W^{\perp}) = W^{\circ}$. So that $\dim(W) + \dim(W^{\perp}) = \dim(V)$.

Proof. Exercise.