Lie Algebras IV 2008
 Assignment 3. Solutions.

1. Let $x, y \in L, \alpha, \beta \in \mathbb{F}, \xi, \eta \in V^{*}$ and $v \in V$. First consider $(\alpha x+\beta y)(\xi)(v)=-\xi((\alpha x+\beta y) v)=$ $-\xi(\alpha x v+\beta y v)=-\alpha \xi(x v)-\beta \xi(y v)=\alpha(x \xi)(v)+\beta(y \xi)(v)=(\alpha(x \xi)+\beta(y \xi))(v)$. Hence $(\alpha x+\beta y)(\xi)=$ $\alpha(x \xi)+\beta(y \xi)$. [2] Second consider $(x(\alpha \xi+\beta \eta))(v)=-(\alpha \xi+\beta \eta)(x v)=-\alpha \xi(x v)-\beta \eta(x v)=\alpha x(\xi)(v)+$ $\beta x(\eta)(x v)=(\alpha x(\xi)+\beta x(\eta))(v)$. Hence $x(\alpha \xi+\beta \eta)=\alpha x(\xi)+\beta x(\eta)$. [2] Finally $(x(y(\xi))-y(x(\xi)))(v)=$ $x(y(\xi))(v)-y(x(\xi))(v)=-y(\xi)(x v)+x(\xi)(y v)=\xi(y x(v))-\xi(x(y(v))=\xi(y x(v)-x y(v))=$ $\xi([y, x](v))=-[y, x](\xi)(v)=[x, y](\xi)(v)$. Thus we have that $x(y(\xi))-y(x(\xi))=[x, y](\xi)$ [2] and we concluded that V^{*} with this action of L is an L-module.
[Marks: $2+2+2=6$]
2. (a) Let $x, y \in L, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$. Then $(\alpha x+\beta y) \star v=g(\alpha x+\beta y) g^{-1} v=g\left(\alpha x g^{-1} v+\beta y g^{-1} v\right)=$ $\alpha\left(g x g^{-1} v\right)+\beta\left(g y g^{-1} v\right)=\alpha x \star v+\beta y \star v$ as required. [1] Also we have $x \star(\alpha v+\beta w)=g x g^{-1}(\alpha v+\beta w)=$ $g x\left(\alpha g^{-1} v+\beta g^{-1} w\right)=g\left(\alpha x g^{-1} v+\beta x g^{-1} w\right)=\alpha g x g^{-1}+\beta g x g^{-1} w=\alpha x \star v+\beta x \star w$ as required. [1] Finally we check the bracket. $x \star(y \star v)-y \star(x \star v)=x \star\left(g y g^{-1} v\right)-y \star\left(g x g^{-1} v\right)=g x g^{-1}\left(g y g^{-1} v\right)-$ $g y g^{-1}\left(g x g^{-1} v\right)=g x y g^{-1} v-g y x g^{-1} v=g\left([x, y]\left(g^{-1} v\right)\right)=g[x, y] g^{-1} v=[x, y] \star v$. [1] So this is an L-module.

To see the module V_{g} is isomorphic to V we define $\theta: V \rightarrow V_{g}$ by $\theta(v)=g v$. It is straight forward to check that θ is a linear isomorphism of vector spaces [2]. Moreover $\theta(x v)=g x v=g x g^{-1} g v=x \star \theta(v)$ so that θ is an L-module isomorphism. [2]
(b) It is clear this map is linear so it would suffice to prove it is a homomorphism which can be done by a calculation. However it is easier to use part (a) as follows. Notice that

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right]=\left[\begin{array}{cc}
-a & -c \\
-b & -d
\end{array}\right]
$$

because $a+d=0$. It follows from part (a) that this is a representation and moreover it is isomorphic to the standard representation on \mathbb{C}^{2}. [2]

Notice that the defining representation is the usual representation where each matrix in $\operatorname{sl}(2, \mathbb{C})$ is represented by itself or equivalently it corresponds the inclusion map $\operatorname{sl}(2, \mathbb{C}) \rightarrow g l(2, \mathbb{C})$.
[Marks: $3+2+2+2=7]$
3. $\operatorname{tr}([X, Y] Z)=\operatorname{tr}(X Y Z)-\operatorname{tr}(Y X Z)=\operatorname{tr}(X Y Z)-\operatorname{tr}(X Z Y)=\operatorname{tr}(X[Y, Z])$. Notice to show that $\operatorname{tr}(Y X Z)=$ $\operatorname{tr}(X Z Y)$ it is enough to know that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ so that $\operatorname{tr}(Y(X Z))=\operatorname{tr}\left((X Z) Y\right.$. In general $\operatorname{tr}\left(X_{1} X_{2} \ldots X_{n}\right)$ is invariant under any cyclic permutation of X_{1}, \ldots, X_{n} and $Y X Z \mapsto X Z Y$ is a cyclic permutation.
[Marks: 2]
4. Let $x, y \in I^{\perp}, \alpha, \beta \in \mathbb{F}$ and $z \in I$. Note that $0 \in I^{\perp}$ as $\kappa(x, 0)=0$. Also $\kappa(\alpha x+\beta y, z)=\alpha \kappa(x, z)+\beta \kappa(y, z)=$ $\alpha 0+\beta 0=0$ so that $\alpha x+\beta y \in I^{\perp}$ and hence I^{\perp} is a subspace of L. [2] Now let $y \in L$ and consider [y, x]. We have $\kappa([y, x], z)=-\kappa([x, y], z)=-\kappa(x,[y, z])=0$ as $[y, z] \in I$. Thus I^{\perp} is an ideal in L. [2]

Notice that you don't need to go back to the definition of the Killing form to prove any of this.
[Marks: $2+2=4]$
5. $L^{(2)}=\operatorname{span}\{y, z\}$ so that $L^{(3)}=0$. Hence L is solvable so the maximal solvable ideal is L. Hence $\operatorname{rad}(L)=L$.[2] We have $[x, y]=z,[x, z]=y$ and $[y, z]=0$ so the matrices for the adjoint action relative to the basis $\{x, y, z\}$ are

$$
\operatorname{ad}(x)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \operatorname{ad}(y)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \text { and } \operatorname{ad}(z)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence

$$
\kappa(x, x)=\operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(x))=2, \kappa(x, y)=\operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(y))=0, \kappa(x, z)=\operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(y)=0
$$

and

$$
\kappa(y, y)=\operatorname{tr}(\operatorname{ad}(y) \operatorname{ad}(y))=0, \kappa(z, z)=\operatorname{tr}(\operatorname{ad}(z) \operatorname{ad}(z))=0, \kappa(y, z)=\operatorname{tr}(\operatorname{ad}(y) \operatorname{ad}(z))=0
$$

It follows that $L^{\perp}=\operatorname{span}\{y, z\} \neq \operatorname{rad}(L)=L$. [3]
Notice that you can also use Cartan's First Criterion to show that $L^{\prime} \subset L^{\perp}$ which simplifies things.
6. We have from lectures that if D is a derivation then $\operatorname{ad}(D(x))=[D, \operatorname{ad}(x)]$. Hence $\kappa(D(x), y)=\operatorname{tr}(\operatorname{ad}(D(x))$ $\operatorname{ad}(y))=\operatorname{tr}([D, \operatorname{ad}(x)] \operatorname{ad}(y))=-\operatorname{tr}([\operatorname{ad}(x), D] \operatorname{ad}(y))=-\operatorname{tr}(\operatorname{ad}(x)[D, \operatorname{ad}(y)]=-\operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(D(y))=$ $-\kappa(x, D(y))$
[Marks: 3]
7. From the handout we have $\kappa(h, h)=8, \kappa(e, f)=4$ and every other inner product amongst the basis $\{e, h, f\}$ vanishes. It is straight forward to check that $(h, h)=2,(e, f)=1$ and all other combinations vanish. So by bilinearity of both κ and $($,$) we conclude that (x, y)=(1 / 4) \kappa(x, y)$ for all $x, y \in \operatorname{sl}(2, \mathbb{C})$.
[Marks: 3]

$$
\text { Total marks } 6+7+2+4+5+3+3=32
$$

