## Lie Algebras IV 2009

## Assignment 2. Solutions.

1. We use the result from Assignment 1 that $L^{\prime}=L_{1}^{\prime} \oplus L_{2}^{\prime}$ and induction to show that $L^{(k)}=L_{1}^{(k)} \oplus L_{2}^{(k)}$. For $k=1$ we are done. Assume then that the result is true for $k \leq m$. Then $L^{(m+1)}=\left(L^{(k)}\right)^{\prime}=\left(L_{1}^{(k)} \oplus L_{2}^{(k)}\right)^{\prime}=$ $\left(L_{1}^{(k)}\right)^{\prime} \oplus\left(L_{2}^{(k)}\right)^{\prime}=L_{1}^{(k+1)} \oplus L_{2}^{(k+1)}$ [2]. If $L$ is solvable then there is a $k$ with $L^{(k)}=0$ so that $0=L^{(k)}=L_{1}^{(k)} \oplus L_{2}^{(k)}$ and thus $L_{1}^{(k)}=0=L_{2}^{(k)}$ so that $L_{1}$ and $L_{2}$ are solvable [1]. If $L_{1}$ and $L_{2}$ are solvable there exist $k_{1}$ and $k_{2}$ such that $L_{1}^{\left(k_{1}\right)}=0$ and $L_{2}^{\left(k_{2}\right)}=0$. If we let $k$ be the maximum of $k_{1}$ and $k_{2}$ then $L_{1}^{(k)}=0=L_{2}^{(k)}$ so that $L^{(k)}=0 \oplus 0=0$. Hence $L$ is solvable [2].
[Marks: $2+1+2=5]$
2. If $L$ has an non-zero abelian ideal $I$ then $I^{\prime}=0$ so that $I$ is solvable [1]. If $L$ has a non-zero solvable ideal $I$ then there is a $k$ such that $I^{(k-1)} \neq 0$ and $I^{(k)}=0$. Let $J=I^{(k-1)} \neq 0$ then $[J, J]=I^{(k)}=0$ so that $J$ is a non-zero abelian ideal [2].
[Marks: $1+2$ = 3]
3. We cannot have $\operatorname{dim}(Z(L))=\operatorname{dim}(L)$ as then $L=Z(L)$ and $L$ is abelian which is a contradiction [1]. So assume $\operatorname{dim}(Z(L))=\operatorname{dim}(L)-1$. Choose $y \in L$ with $y \notin Z(L)$. Then $\operatorname{dim}(Z(L) \oplus \operatorname{span}\{y\})=\operatorname{dim}(Z(L))+1=\operatorname{dim}(L)$ so that $L=Z(L) \oplus \operatorname{span}\{y\}$. So if $x, x^{\prime}$ are in $L$ we can write them as $x=z+\alpha y$ and $x^{\prime}=z^{\prime}+\alpha^{\prime} y$ for $z, z^{\prime} \in Z(L)$ and $\alpha, \alpha^{\prime} \in \mathbb{F}$. Now compute $\left[x, x^{\prime}\right]=\left[z, z^{\prime}\right]+\alpha\left[y, z^{\prime}\right]+\alpha^{\prime}[z, y]+\alpha \alpha^{\prime}[y, y]=0$. But then $L$ is abelian which is a contradiction. Hence $\operatorname{dim}(Z(L)) \leq \operatorname{dim}(L)-2$ [3].
[Marks: $1+3=4]$
4. (a) If $h \in I$ then we must also have $2 e=[h, e] \in I$ and $2 f=-[h, f] \in I$ so that $I$ contains $h$, $e$ and $f$ and thus it contains $\operatorname{sl}(2, \mathbb{C})=\operatorname{span}\{h, e, f\}$ so that $I=\operatorname{sl}(2, \mathbb{C})$. [2]
(b) If $I$ is non-zero we can find $x=\alpha h+\beta e+\gamma f \in I$ with $x \neq 0$. If we bracket this with $e, f$ and $h$ we find that $I$ must contain $-2 \alpha e+\gamma h, 2 \alpha f-\beta h$ and $2 \beta e-2 \gamma f$. Bracketing the first of these with $f$ again gives $2 \beta h \in I$ and similarly bracketing the second with $e$ gives $2 \gamma h \in I$. So if either of $\beta$ or $\gamma$ are non-zero then $h \in I$ and $I=\operatorname{sl}(2, \mathbb{C})$. But if $\beta=\gamma=0$ then, as $x \neq 0$, we must have $x=\alpha h \in I$ with $\alpha \neq 0$ so that $h \in I$ and again $I=\operatorname{sl}(2, \mathbb{C})$. [3]
(c) We know that $s l(2, \mathbb{C})$ is not solvable and that $s l(2, \mathbb{C})$ has no other ideals besides 0 . So $s l(2, \mathbb{C})$ has no solvable ideas except for 0 . Hence the radical of $\operatorname{sl}(2, \mathbb{C})$ is 0 and thus $\operatorname{sl}(2, C)$ is semisimple. [2]
[Marks: $2+3+2=7]$
5. If $Z$ is an $n \times n$ matrix call the entries of the form $X_{i j}$ with $j=i+d$ the $d$ th diagonal. So the 0-th diagonal is what we usually think of as the diagonal, the $-(n-1)$-th diagonal is the entry $X_{1 n}$ in the bottom left-hand corner etc. From the results in Assignment 1 we can show that if $X, Y$ have the $-n+1,-n+2, \ldots, d$ diagonals all zero then $[X, Y]$ has the $-n+1,-n+2, \ldots, d+1$ diagonals all zero. So the elements of $b(n, \mathbb{C})^{(k)}$ will have $-n+1,-n+2, \ldots, k-1$ diagonals all zero. Hence $b(n, \mathbb{C})^{(n)}=0$. So $b(n, \mathbb{C})$ is solvable. [2]

However it is not nilpotent. To see this let $E_{i j} j>i$ be a basis for $b(n, \mathbb{C})^{\prime}$, ie the strictly upper triangular matrices. Then we know that $\left[E_{i i}, E_{i j}\right]=E_{i j}$ so that $\left.[b(n, \mathbb{C}), b(n, \mathbb{C}))^{\prime}\right]=b(n, \mathbb{C})^{\prime}$. Hence $b(n, \mathbb{C})^{k}=b(n, \mathbb{C})^{1}$ for all $k$. [2]
[Marks: $2+2=4]$
6. Consider $x+L^{k+1} \in L^{k} / L^{k+1}$ where $x \in L^{k}$ and $y+L^{k+1}$ where $y \in L$. Then $\left[x+L^{k+1}, y+L^{k+1}\right]=$ $[x, y]+L^{k+1}=0$ because $[x, y] \in\left[L^{k}, L\right]=L^{k+1}$.
[Marks: 2]
7. ( $\Rightarrow$ ) First we show linear independence. Assume that $\sum_{i=1}^{q} a_{i} v^{i}+V=0$ in $V / W$. This means that $\sum_{i=1}^{q} a_{i} v^{i} \in W$ and hence $\sum_{i=1}^{q} a_{i} v^{i}=\sum_{j=1}^{p} b_{j} w^{j}$ for some $b_{1}, \ldots, b_{p}$ so that $\sum_{i=1}^{q} a_{i} v^{i}+\sum_{j=1}^{p}\left(-b_{j}\right) w^{j}=0$. As $\left\{w^{1}, \ldots, w^{p}, v^{1}, \ldots, v^{q}\right\}$ is a basis of $V$ this implies that $a_{1}=\cdots=a_{q}=0$ so that $\left\{w^{1}, \ldots, w^{p}\right\}$ are linearly
independent. [1] Second we show they span. Let $v+W \in V / W$ then $v=\sum_{j=1}^{p} b_{i} w^{i}+\sum_{i=1}^{q} a_{i} v^{i}$ for some $a_{1}, \ldots, a_{q}, b_{1}, \ldots, b_{p}$. Hence $v+V=\sum_{j=1}^{p} b_{i} w^{i}+\sum_{i=1}^{q} a_{i} v^{i}+V=\sum_{i=1}^{q} a_{i}\left(v^{i}+V\right)$ as required. [1]
$(\Longleftarrow)$ First we show linear independence. Assume that $\sum_{i=1}^{q} a_{i} v^{i}+\sum_{j=1}^{p}\left(-b_{j}\right) w^{j}=0$. Then $0=\sum_{i=1}^{q} a_{i} v^{i}+$ $\sum_{j=1}^{p}\left(-b_{j}\right) w^{j}+W=\sum_{i=1}^{q} a_{i}\left(v^{i}+W\right)$ so that $a_{1}=\cdots=a_{q}$ because $\left\{v^{1}+W, \ldots, v^{q}+W\right\}$ is a basis of $V / W$. Hence $\sum_{j=1}^{p}\left(-b_{j}\right) w^{j}=0$ so that $b_{1}=\cdots=b_{p}=0$ because $\left\{w^{1}, \ldots, w^{p}\right\}$ is a basis of $W$. This gives the required result. [1] Now let $v \in V$. Because $\left\{v^{1}+W, \ldots, v^{q}+W\right\}$ is a basis of $V / W$ we there exist $a_{1}, \ldots, a_{q}$ such that $v+V=\sum_{i=1}^{q} a_{i}\left(v^{i}+W\right)=\sum_{i=1}^{q} a_{i} v^{i}+W$ and hence $v-\sum_{i=1}^{q} a_{i} v^{i} \in W$. But then $\left\{w^{1}, \ldots, w^{p}\right\}$ is a basis of $W$ so there exists $b_{1}, \ldots, b_{p}$ such that $v-\sum_{i=1}^{q} a_{i} v^{i}=\sum_{j=1}^{p} b_{j} w_{j}$. Thus $v=\sum_{i=1}^{q} a_{i} v^{i}+\sum_{j=1}^{p} b_{j} w^{j}$ as required. [1]
[Marks: $1+1+1+1=4]$
8. We know that there exists $v \in V, v \neq 0$ such that $X v=\lambda v$ for some $\lambda \in \mathbb{C}$. We prove the result by induction. If $\operatorname{dim}(V)=1$ we are done as a $1 \times 1$ matrix is upper-triangular [1]. Assume the result is true whenever the dimension is less than $k$ and consider $V$ of dimension $k$ [1]. Choose $v \neq 0$ so that $X v=\lambda v$ and let $\mathbb{C} v$ be the line spanned by $v$. Then $X(\mathbb{C} v) \subset(\mathbb{C} v)$ so that there is a well-defined linear map $\bar{X}: V / \mathbb{C} v \rightarrow V / \mathbb{C} v$ given by $\bar{X}(w+\mathbb{C} v)=X(w)+\mathbb{C} v[1]$. As $\operatorname{dim}(V / \mathbb{C} v)=k-1$ we can apply the induction and find a basis $v_{1}+\mathbb{C} v, \ldots v_{k-1}+\mathbb{C} v$ for which $\bar{X}$ is upper-triangular [1]. From the previous question we know that $v, v_{1}, \ldots, v_{k-1}$ is a basis of $V$ [1]. We have that $X(v)=\lambda v$ and that $\bar{X}\left(v_{i}+\mathbb{C} v\right)=X\left(v_{i}\right)+\mathbb{C} v$ is a linear combination of the vectors $v_{1}+\mathbb{C} v, \ldots, v_{i}+\mathbb{C} v$ [1]. It follows that $X\left(v_{i}\right)$ is a linear combination of the vectors $v, v_{1}, \ldots, v_{i}$ and thus $X$ is upper-triangular. [1]
[Marks: $1+1+1+1+1+1+1=7]$

