Lie Algebras IV 2008

Assignment 2. Due Wednesday 29th.

Note: I will be away for the two weeks of the break. Email might work.

1. Let the Lie algebra $L = L_1 \oplus L_2$ be a direct sum of two arbitrary Lie algebras L_1 and L_2 . (This is not necessarily the L_2 defined in class.) Prove that L is solvable if and only if L_1 and L_2 are solvable.

2. Let L be a Lie algebra. Show that L has a non-zero solvable ideal if and only if L has a non-zero abelian ideal.

3. Let *L* be a non-abelian Lie algebra. Show that $\dim(Z(L)) \leq \dim(L) - 2$.

- 4. Consider the Lie algebra $sl(2, \mathbb{C})$ with basis *h*, *e* and *f* satisfying [h, e] = 2e, [h, f] = -2f and [e, f] = h.
 - a) Show that if *I* is an ideal in $sl(2, \mathbb{C})$ and $h \in I$ then $I = sl(2, \mathbb{C})$.
 - b) Show that $sl(2, \mathbb{C})$ has no non-trivial ideas. (Hint: Let $x = \alpha h + \beta e + \gamma f \in I$ and try to use the fact that [e, x], [f, x] and [h, x] are in I to show that $h \in I$.)
 - c) Deduce from (b) that $sl(2, \mathbb{C})$ is semisimple.

5. Show that $b(n, \mathbb{C})$ the Lie algebra of $n \times n$, complex, upper triangular matrices is solvable but not nilpotent.

6. Let *L* be a Lie algebra and denote by L^k the lower central series. Show that $L^k/L^{k+1} \subseteq Z(L/L^{k+1})$.

7. Let *W* be a subspace of a finite-dimensional vector space *V*. Let $\{w^1, \ldots, w^p\}$ be a basis of *W*. If v^1, \ldots, v^q are vectors in *V* show that $\{w^1, \ldots, w^p, v^1, \ldots, v^q\}$ is a basis of *V* if and only if $\{v^1 + W, \ldots, v^q + W\}$ is a basis of *V*/*W*.

8. Let *V* be a finite dimensional, complex, vector space and $x \in gl(V)$. Assume that $0 \neq v \in V$ is in the kernel of *x* and let $\mathbb{C}v$ be the span of *v* in *V*. Show that $\bar{x}: V/\mathbb{C}v \to V/\mathbb{C}v$, defined by $\bar{x}(w + \mathbb{C}v) = x(w) + \mathbb{C}v$ is well-defined. If $\{v^1 + \mathbb{C}v, \dots, v^r + \mathbb{C}v\}$ is a basis of $V/\mathbb{C}v$ with respect to which \bar{x} is strictly upper triangular show that $\{v, v^1, \dots, v^r\}$ is a basis of *V* with respect to which *x* is strictly upper triangular.