Lie Algebras IV 2009

Assignment 1. Solutions.

1. (a) The simplest way of doing this is probably to draw two general matrices $E_{i j}$ and $E_{k l}$ and argue what happens. But in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ it is easier to just use symbols so note that if the (p, q) th entry of $E_{i j}$ is denoted $\left(E_{i j}\right)^{p q}$ then we have $\left(E_{i j}\right)^{p q}=\delta_{i p} \delta_{j q}$. So we have

$$
\left(E_{i j} E_{k l}\right)^{p q}=\sum_{r=1}^{n} \delta_{i p} \delta_{j r} \delta_{k r} \delta_{l q}=\delta_{j k} \delta_{i p} \delta_{l q}=\delta_{j k}\left(E_{i l}\right)^{p q} .
$$

The result for the bracket now follows easily. [2]
(b) First the derived algebra. We know that as the $E_{i j}$ are a basis of $g l_{n}(\mathbb{C})$ the derived algebra is spanned by all the brackets $\left[E_{i j}, E_{k l}\right]$. Moreover the trace of any bracket is zero so the derived algebra is inside the subalgebra of traceless matrices, that is $s l_{n}(\mathbb{C})$. If $i \neq l$ then $\left[E_{i 1}, E_{1 l}\right]=E_{i l}$ is in the derived algebra. This means that all the matrices with zeroes on the diagonal are in the derived algebra. Now consider a diagonal matrix X with trace zero. As $X_{11}+\ldots X_{n n}=0$ we have $-X_{n n}=X_{11}+\ldots X_{n-1 n-1}$ and thus

$$
\begin{aligned}
X & =X_{11}\left(E_{11}-E_{22}\right)+\left(X_{11}+X_{22}\right)\left(E_{22}-E_{33}\right)+\cdots+\left(X_{11}+X_{22}+\cdots+X_{n n}\right)\left(X_{n-1 n-1}-X_{n n}\right) \\
& =X_{11}\left[E_{12}, E_{21}\right]+\left(X_{11}+X_{22}\right)\left[E_{23}, E_{32}\right]+\cdots+\left(X_{11}+X_{22}+\cdots+X_{n n}\right)\left[X_{n-1 n}, X_{n n-1}\right]
\end{aligned}
$$

It follows that every traceless matrix is in the derived algebra so that the derived algebra is $s l_{n}(\mathbb{C})$ [3].
Second the centre. First note that if X is a multiple of the identity matrix then $[X, Y]=0$ for all $Y \in g l_{n}(\mathbb{C})$. We want to show that the converse is also true. Let X be in the centre then $\left[X, E_{i j}\right]=0$ for all i and j. So

$$
\sum_{k, l=1}^{n} X_{k l} \delta_{j k} E_{i l}-X_{k l} \delta_{l i} E_{k j}=0
$$

and taking the (p, q) th element and applying the sums to the Kronecker deltas gives

$$
X_{j q} \delta_{p i}-X_{p i} \delta_{j q}=0
$$

for all i, j, p, q. Letting $p=i=q$ gives

$$
X_{j i}-X_{i i} \delta_{j i}=0
$$

so if $i \neq j$ then $X_{j i}=0$ and if $i=j$ then $X_{i i}=X_{j j}$. Hence X is a scalar multiple of the identity. There are other ways to prove this in particular you have $X A=A X$ for all A. So if A is an elementary matrix this means any column operation applied to X has the same result as the corresponding row operation. This forces X to be diagonal and then making all diagonal entries constant follows as above [2].
(c) Let $b_{n}(\mathbb{C})$ be the subset of all upper triangular matrices in $g l_{n}(\mathbb{C})$. Clearly $b_{n}(\mathbb{C})$ is a vector subspace. Assume A and B are upper triangular. So if $i>j$ then $A_{i j}=B_{i j}=0$. Consider $(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}$. This can only be non-zero if $i \leq k$ and $k \leq j$ which forces $i \leq j$. Hence $A B$ is upper triangular and so also is $B A$ thus $[A, B]$ is upper triangular. We have thus shown that $b_{n}(\mathbb{C})$ is a Lie subalgebra of $g l_{n}(\mathbb{C})$. This is not an ideal. The best way to show this is to give example that works for every n. One such is $\left[E_{n 1}, E_{11}\right]=E_{n 1}$ but $E_{n 1}$ is not upper triangular. [3]
2. It is enough to show that for all $x, y \in L$ we have $[x, y]$ in the span of the set

$$
\left\{\left[v_{i}, v_{j}\right] \mid 1 \leq i<j \leq n\right\} .
$$

Let $x=\sum_{i=1}^{r} x_{i} v_{i}$ and $y=\sum_{j=1}^{r} y_{j} v_{j}$. Then

$$
\begin{aligned}
{[x, y] } & =\sum_{i, j=1}^{n} x_{i} y_{j}\left[v_{i}, v_{j}\right] \\
& =\sum_{i<j=1}^{n}\left(x_{i} y_{j}-x_{j} y_{i}\right)\left[v_{i}, v_{j}\right]
\end{aligned}
$$

So $\left\{\left[v_{i}, v_{j}\right] \mid 1 \leq i<j \leq n\right\}$ is a spanning set for L^{\prime}. [3]
3. We have $\phi: L \rightarrow J$ an isomorphism of Lie algebras. Because ϕ is a bijection we can define $\phi^{-1}: J \rightarrow L$ which is well known to be a vector space isomorphism. We check it is a Lie algebra isomorphism. We have $\phi\left(\left[\phi^{-1}(x), \phi^{-1}(y)\right]\right)=[x, y]$ so that $\left[\phi^{-1}(x), \phi^{-1}(y)\right]=\phi^{-1}([x, y])$. [1]

First the centre. Let $x \in Z(L)$ and $y \in J$ then $\left[x, \phi^{-1}(y)\right]=0$ and applying ϕ gives $[\phi(x), y]=0$ but this is true for all y so that $\phi(x) \in Z(J)$ or $\phi(Z(L)) \subset Z(J)$. Now swap L and J so that $\phi^{-1}(Z(J)) \subset Z(L)$ or $Z(J) \subset \phi(Z(L))$. Hence $Z(J)=\phi(Z(L))$ [3].

Secondly the derived algebra.

$$
\begin{aligned}
\phi\left(L^{\prime}\right) & =\phi(\operatorname{span}\{[x, y] \mid x, y \in L\}) \\
& =\operatorname{span}\{[\phi(x), \phi(y)] \mid x, y \in L\} \\
& =\operatorname{span}\{[u, v] \mid u, v \in J\} \quad \text { (as } \phi \text { is onto) } \\
& =J^{\prime}
\end{aligned}
$$

Notice that at the first step here we use the following fact: If $f: V \rightarrow W$ is a linear map between vector spaces and $X \subset V$ then $f(\operatorname{span}(X))=\operatorname{span}(f(X))$. [3]
4. Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ be in $L=L_{1} \oplus L_{2}$ then $[x, y]=\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) \in L_{1}^{\prime} \oplus L_{2}^{\prime}$. As $L_{1}^{\prime} \oplus L_{2}^{\prime}$ is a subalgebra we must have the that the subalgebra generated by all such $[x, y]$ is inside $L_{1}^{\prime} \oplus L_{2}^{\prime}$. That is $L^{\prime} \subset L_{1}^{\prime} \oplus L_{2}^{\prime}$. On the other hand let $x_{1}, y_{1} \in L_{1}$. Then $\left(\left[x_{1}, y_{1}\right], 0\right)=\left[\left(x_{1}, 0\right),\left(y_{1}, 0\right)\right] \in L^{\prime}$. Again this means that the subalgebra generated by all such elements is in L^{\prime}. But that means that $L_{1}^{\prime} \oplus 0 \subset L^{\prime}$. Similarly $0 \oplus L_{2}^{\prime} \subset L^{\prime}$. As L^{\prime} is a vector subspace the direct sum of these two spaces must also be contained in L^{\prime} so $L_{1}^{\prime} \oplus L_{2}^{\prime} \subset L^{\prime}$ and thus $L_{1}^{\prime} \oplus L_{2}^{\prime}=L^{\prime}$. [4]

Now let $\left(x_{1}, x_{2}\right) \in Z\left(L_{1} \oplus L_{2}\right)$. This happens if and only if $0=\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\left(\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right)$ for all $\left(y_{1}, y_{2}\right) \in L_{1} \oplus L_{2}$ which is if and only if $\left[x_{1}, y_{1}\right]=0$ for all $y_{1} \in L_{1}$ and $\left[x_{2}, y_{2}\right]=0$ for all $y_{2} \in L_{2}$ which is is if and only if $x_{1} \in Z\left(L_{1}\right)$ and $x_{2} \in Z\left(L_{2}\right)$. Thus $Z\left(L_{1} \oplus L_{2}\right)=Z\left(L_{1}\right) \oplus Z\left(L_{2}\right)$. [4]
5. Let $a=a_{x} x+a_{y} y$ and $b=b_{x} x+b_{y} y$. Then $[a, b]=\left[a_{x} x+a_{y} y, b_{x} x+b_{y} y\right]=\left(a_{x} b_{y}-a_{y} b_{x}\right) x$ and we see the bracket is uniquely defined and anti-symmetric [2]. We check it satisfies the Jacobi identity. Let $c=c_{x} x+c_{y} c$. We have

$$
\begin{aligned}
{[a,[b, c]]+[b,[c, a]]+[c,[[a, b]]} & =\left[a,\left(b_{x} c_{y}-b_{y} c_{x}\right) x+\left[b,\left(c_{x} a_{y}-c_{y} a_{x}\right) x\right]+\left[c,\left(a_{x} b_{y}-a_{y} b_{x}\right) x\right]\right. \\
& =\left(a_{y}\left(b_{x} c_{y}-b_{y} c_{x}\right)+b_{y}\left(c_{x} a_{y}-c_{y} a_{x}\right)+c_{y}\left(a_{x} b_{y}-a_{y} b_{x}\right)\right) x \\
& =\left(a_{y} b_{x} c_{y}-c_{y} a_{y} b_{x}\right)+\left(-a_{y} b_{y} c_{x}+b_{y} c_{x} a_{y}\right)+\left(-b_{y} c_{y} a_{x}+c_{y} a_{x} b_{y}\right) \\
& =0
\end{aligned}
$$

Hence L is a Lie algebra.
6. \mathbb{C}^{3} is a complex vector space and the cross-product is a bilinear map $\mathbb{C}^{3} \times \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$. It is well known that $x \times x=0$ for all $x \in \mathbb{C}^{3}$. From first year we have

$$
\begin{aligned}
& x \times(y \times z)=y(x \cdot z)-z(x \cdot y) \\
& y \times(z \times x)=z(y \cdot x)-x(y \cdot z) \\
& z \times(x \times z)=x(z \cdot y)-y(z \cdot x)
\end{aligned}
$$

and clearly adding up gives the Jacobi identity. I was happy to take the equivalent result for tensors: $\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}$ or a calculation with determinants. [5]

If $x \in Z\left(\mathbb{C}^{3}\right)$ cross-product x with the three usual basis vectors, actually two will do, to show that the three components of x are zero. [2]

Let $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$. Then $e_{1} \times e_{2}=e_{3}, e_{2} \times e_{3}=e_{1}$ and $e_{3} \times e_{1}=e_{2}$. Thus $\left(\mathbb{C}^{3}\right)^{\prime}$ contains e_{1}, e_{2} and e_{3} which span \mathbb{C}^{3} so $\left(\mathbb{C}^{3}\right)^{\prime}=\mathbb{C}^{3}$. [2]

Recall that $\operatorname{sl}(2, \mathbb{C})$ has a basis e, f, h satisfying: $[e, f]=h,[h, e]=2 e$ and $[h, f]=-2 f$. Let $H=$ $(0,0,2 i), E=(1, i, 0)$ and $F=(-1, i, 0)$. It can be checked that $H \times E=2 E, H \times F=-2 F$ and $E \times F=H$. It follows that the map sending $a H+b E+c F$ to $a h+b e+c h$ is an isomorphism. This is the map:

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left[\begin{array}{cc}
\frac{1}{2 i} z_{3} & \frac{1}{2}\left(z_{1}-i z_{2}\right) \tag{3}\\
\frac{-1}{2}\left(z_{1}+i z_{2}\right) & -\frac{1}{2 i} z_{3}
\end{array}\right]
$$

