1. Consider the Lie algebra $\mathfrak{gl}_n(C)$.

 a) Let E_{ij} be the matrix with a one in the (i, j) position and zeros elsewhere. Show that

 $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} - \delta_{li}E_{kj}$

 where δ_{ij} is the Kronecker delta symbol which is one if $i = j$ and zero otherwise.

 b) Using part a) or otherwise find the derived algebra and centre of $\mathfrak{gl}_n(C)$. You might find it useful to compute things like: $[X, E_{ij}]$, for a general matrix X and $[E_{kk}, E_{ij}]$ and $[E_{ij}, E_{ji}]$.

 c) Show that the upper triangular matrices in $\mathfrak{gl}_n(C)$ are a Lie subalgebra. Are they an ideal?

2. If L is a finite-dimensional Lie algebra with basis v_1, \ldots, v_r show that $\{ [v_i, v_j] \mid 1 \leq i < j \leq n \}$ is a spanning set for L'.

3. Let $\phi: L \to J$ be an isomorphism of Lie algebras. Show that $Z(J) = \phi(Z(L))$ and $J' = \phi(L')$.

4. Let $L = L_1 \oplus L_2$ where L_1 and L_2 are Lie algebras. Show that $L' = L'_1 \oplus L'_2$ and $Z(L) = Z(L_1) \oplus Z(L_2)$.

5. Let L be a two-dimensional vector space with basis x and y. Show that requiring bilinearity and antisymmetry and defining the bracket of x and y by $[x, y] = x$ suffices to define a unique Lie algebra L.

6. Show that \mathbb{C}^3 with the cross (vector) product as bracket is a Lie algebra. Calculate its centre and derived algebra. Find an explicit Lie algebra isomorphism between \mathbb{C}^3 and $\mathfrak{sl}(2, \mathbb{C})$.