Lie Algebras IV 2009

Assignment 1. Due Friday 27th March 2009.

- 1. Consider the Lie algebra $gl_n(\mathbb{C})$.
 - a) Let E_{ij} be the matrix with a one in the (i, j) position and zeros elsewhere. Show that

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{li} E_{kj}$$

where δ_{ij} is the Kronecker delta symbol which is one if i = j and zero otherwise.

- b) Using part a) or otherwise find the derived algebra and centre of $gl_n(\mathbb{C})$. You might find it useful to compute things like: $[X, E_{ij}]$, for a general matrix X and $[E_{kk}, E_{ij}]$ and $[E_{ij}, E_{ji}]$.
- c) Show that the upper triangular matrices in $gl_n(\mathbb{C})$ are a Lie subalgebra. Are they an ideal ?

2. If *L* is a finite-dimensional Lie algebra with basis v_1, \ldots, v_r show that $\{[v_i, v_j] \mid 1 \le i < j \le n\}$ is a spanning set for *L*'.

3. Let $\phi: L \to J$ be an isomorphism of Lie algebras. Show that $Z(J) = \phi(Z(L))$ and $J' = \phi(L')$.

4. Let $L = L_1 \oplus L_2$ where L_1 and L_2 are Lie algebras. Show that $L' = L'_1 \oplus L'_2$ and $Z(L) = Z(L_1) \oplus Z(L_2)$.

5. Let *L* be a two-dimensional vector space with basis *x* and *y*. Show that requiring bilinearity and antisymmetry and defining the bracket of *x* and *y* by [x, y] = x suffices to define a unique Lie algebra *L*.

6. Show that \mathbb{C}^3 with the cross (vector) product as bracket is a Lie algebra. Calculate its centre and derived algebra. Find an explicit Lie algebra isomorphism between \mathbb{C}^3 and $sl(2, \mathbb{C})$.