Conventions for matrices

If $X: V \rightarrow V$ is a linear map on a finite dimensional vector space V and V has a basis v^{1}, \ldots, v^{n} then we can find a matrix $[X]$ which represents X. But what is it? We would like to have that if $Y: V \rightarrow V$ also then $(Y X): V \rightarrow V$ has matrix $[Y X]=[Y][X]$. In fancy language we want the map

$$
\begin{aligned}
g l(V) & \rightarrow g l(n, \mathbb{C}) \\
X & \mapsto[X]
\end{aligned}
$$

to be an algebra isomorphism.
To obtain this we need to define $[X]$ by

$$
X\left(v^{i}\right)=\sum_{j=1}^{n} X_{j i} v^{j}
$$

which is not the obvious thing you might write down. But it works because

$$
\begin{aligned}
\sum_{k=1}^{n}[Y X]_{k i} v^{k} & =(Y X)\left(v^{i}\right) \\
& =Y\left(X\left(v^{i}\right)\right) \\
& =Y\left(\sum_{j=1}^{n} X_{j i} v^{j}\right) \\
& =\sum_{j=1}^{n} X_{j i} Y\left(v^{j}\right) \\
& =\sum_{j=1}^{n} X_{j i}\left(\sum_{k=1}^{n} Y_{k j} v^{k}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{j=1}^{n} Y_{k j} X_{j i}\right) v^{k} \\
& =\sum_{k=1}^{n}([Y][X])_{k i} v^{k}
\end{aligned}
$$

As another test this is a good idea consider the action of a matrix X on column vectors. This defines a linear map $X: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. We would rather hope that if we expand this linear map in the usual basis $\left\{e^{1}, \ldots, e^{n}\right\}$ using the definition above that we find that the $i j$ th element is $X_{i j}$. To see this note that if I apply the matrix X to the vector e^{i} in the standard way it picks out the i th column of X which is also $\sum_{j=1}^{n} X_{j i} e^{j}$. So $X\left(e^{i}\right)=\sum_{j=1}^{n} X_{j i} e^{j}$ as we wanted.

