Lie Algebras IV 2008

Non-degenerate bilinear forms

I want to show that if V is a finite dimensional vector space with a non-degenerate, symmmetric, bilinear form (,) and $W \subset V$ then

$$
\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)
$$

First we prove a result that doesn't need the bilinear form. Recall that V^{*}, the dual space of V is the vector space of all linear maps $\alpha: V \rightarrow \mathbb{F}$. If v^{1}, \ldots, v^{n} is a basis of V then a linear map $\alpha: V^{*} \rightarrow \mathbb{F}$ is determined by the n numbers $\alpha\left(v^{1}\right), \ldots, \alpha\left(v^{n}\right)$ and any collection of n numbers $\alpha_{1}, \ldots, \alpha_{n}$ determines a linear map α by $\alpha\left(\sum_{i=1}^{n} x^{i} v^{i}\right)=\sum_{i=1}^{n} \alpha_{i} x^{i}$. It follows that we can define the so-called dual basis ξ^{1}, \ldots, ξ^{n} of V^{*} by requiring that $\xi^{j}\left(v^{i}\right)=\delta_{i j}$ for all $i, j=1, \ldots, n$.

Exercise 0.1. Prove that ξ^{1}, \ldots, ξ^{n} is a basis of V^{*}.

If $W \subset V$ we define $W^{\circ} \subset V^{*}$ by

$$
W^{\circ}=\{\alpha \in V \mid \alpha(w)=0 \forall w \in W\} .
$$

We have

Proposition 0.1.

$$
\operatorname{dim}(W)+\operatorname{dim}\left(W^{\circ}\right)=\operatorname{dim}(V)
$$

Proof. Let v^{1}, \ldots, v^{r} be a basis for W and extend it to a basis v^{1}, \ldots, v^{n} of V. Consider the dual basis ξ^{1}, \ldots, ξ^{n}. We have that $\xi^{r+1}, \ldots, \xi^{n}$ are linearly independent and in W° because they are zero when applied to the basis elements of W and hence when applied to any vector in W. We show that they span W°. Let α be in W° and write $\alpha=\sum_{i=1}^{n} \alpha_{i} \xi^{i}$. We have that $\alpha\left(v^{j}\right)=\sum_{i=1}^{n} \alpha_{i} \xi^{i}\left(v^{j}\right)=\alpha_{j}$. Hence $\alpha_{1}=\cdots=\alpha_{r}=0$ so that $\alpha=\sum_{i=r+1}^{n} \alpha_{i} \xi^{i}$ as required.

Returning to a symmetric, bilinear form we define a map $\phi: V \rightarrow V^{*}$ by $\phi(v)(w)=(v, w)$.
Exercise 0.2. Show that ϕ is a linear map and $\operatorname{ker}(\phi)=V^{\circ}$.

It follows that if the form is non-degenerate then $\operatorname{ker}(\phi)=0$ and that ϕ is an isomorphism on dimension grounds.
Proposition 0.2. If $W \subset V$ then $\phi\left(W^{\perp}\right)=W^{\circ}$. So that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)$.

Proof. Exercise.

