Assignment 4. Due Friday, 30th May

1. Let *V* be an *L*-module and *V*^{*} the dual space of *V*. If $x \in L$ and $\xi \in V^*$ define $x\xi$ by $(x\xi)(v) = -\xi(xv)$ for all $v \in V$. Show that this makes *V*^{*} into an *L*-module.

2. Let *L* be a Lie algebra.

- (a) Let *V* be an *L*-module. If $g \in GL(V)$ show that defining $x \star v = gxg^{-1}v$ makes *V* into a (new) *L*-module. Denote this *L* module by V_g and show that it is isomorphic to *V*. Note that V_g is obviously the same space as *V* it is just the action of *L* which is different.
- (b) Consider the map $\chi: sl(2, \mathbb{C}) \to gl(2, \mathbb{C})$ defined by

<i>x</i> (a	b) _	$\begin{bmatrix} -a \end{bmatrix}$	-c
	C C	<i>d</i> _]) =	$\lfloor -b$	-d

Show that this defines a representation of $sl(2, \mathbb{C})$ which is isomorphic to the defining representation of $sl(2, \mathbb{C})$ on \mathbb{C}^2 . This means show that the two *L*-module structures on \mathbb{C}^2 are isomorphic.

3. If *V* is a finite dimensional vector space and *X*, *Y* and *Z* are linear maps from *V* to *V* show that tr([X, Y]Z) = tr(X[Y, Z]).

4. Let *L* be a Lie algebra with Killing form $\kappa(,)$. If *I* is an ideal show that

$$I^{\perp} = \{ x \in L \mid \kappa(x, y) = 0 \forall y \in I \}$$

is also an ideal. Don't forget to check that I^{\perp} is a vector subspace.

5. Consider the three-dimensional Lie algebra *L* defined by [x, y] = z, [x, z] = y and [y, z] = 0. You don't need to prove this is a Lie algebra. Calculate rad(*L*), the Killing form and L^{\perp} . Hence show that rad(*L*) may equal L^{\perp} .

6. Let *L* be a Lie algebra and $D: L \rightarrow L$ be a derivation. Show that

$$\kappa(D(x), y) + \kappa(x, D(y)) = 0$$

for all $x, y \in L$ where $\kappa(,)$ is the Killing form. You may need a formula from Lecture 3 relating ad(D(x)), ad(x) and D.

7. Let $L = sl(2, \mathbb{C})$ the Lie algebra of all 2×2 traceless matrices. By calculation show that (x, y) = tr(xy) is a constant multiple of the Killing form $\kappa(x, y)$ and find the constant.