## Lie Algebras IV 2008

## Assignment 4. Due Friday, 30th May

1. Let $V$ be an $L$-module and $V^{*}$ the dual space of $V$. If $x \in L$ and $\xi \in V^{*}$ define $x \xi$ by $(x \xi)(v)=-\xi(x v)$ for all $v \in V$. Show that this makes $V^{*}$ into an $L$-module.
2. Let $L$ be a Lie algebra.
(a) Let $V$ be an $L$-module. If $g \in G L(V)$ show that defining $x \star v=g x g^{-1} v$ makes $V$ into a (new) $L$-module. Denote this $L$ module by $V_{g}$ and show that it is isomorphic to $V$. Note that $V_{g}$ is obviously the same space as $V$ it is just the action of $L$ which is different.
(b) Consider the map $\chi: \operatorname{sl}(2, \mathbb{C}) \rightarrow g l(2, \mathbb{C})$ defined by

$$
x\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
-a & -c \\
-b & -d
\end{array}\right]
$$

Show that this defines a representation of $\operatorname{sl}(2, \mathbb{C})$ which is isomorphic to the defining representation of $\operatorname{sl}(2, \mathbb{C})$ on $\mathbb{C}^{2}$. This means show that the two $L$-module structures on $\mathbb{C}^{2}$ are isomorphic.
3. If $V$ is a finite dimensional vector space and $X, Y$ and $Z$ are linear maps from $V$ to $V$ show that $\operatorname{tr}([X, Y] Z)=\operatorname{tr}(X[Y, Z])$.
4. Let $L$ be a Lie algebra with Killing form $\kappa($,$) . If I$ is an ideal show that

$$
I^{\perp}=\{x \in L \mid \kappa(x, y)=0 \forall y \in I\}
$$

is also an ideal. Don't forget to check that $I^{\perp}$ is a vector subspace.
5. Consider the three-dimensional Lie algebra $L$ defined by $[x, y]=z,[x, z]=y$ and $[y, z]=0$. You don't need to prove this is a Lie algebra. Calculate $\operatorname{rad}(L)$, the Killing form and $L^{\perp}$. Hence show that $\operatorname{rad}(L)$ may equal $L^{\perp}$.
6. Let $L$ be a Lie algebra and $D: L \rightarrow L$ be a derivation. Show that

$$
\kappa(D(x), y)+\kappa(x, D(y))=0
$$

for all $x, y \in L$ where $\kappa($,$) is the Killing form. You may need a formula from Lecture 3$ relating $\operatorname{ad}(D(x))$, $\operatorname{ad}(x)$ and $D$.
7. Let $L=\operatorname{sl}(2, \mathbb{C})$ the Lie algebra of all $2 \times 2$ traceless matrices. By calculation show that $(x, y)=\operatorname{tr}(x y)$ is a constant multiple of the Killing form $\kappa(x, y)$ and find the constant.

