Lie Algebras IV 2008

Assignment 3. Due Thursday 15th May.

1. Let *W* be a subspace of a finite-dimensional vector space *V*. Let $\{w^1, \ldots, w^p\}$ be a basis of *W*. If v^1, \ldots, v^q are vectors in *V* show that $\{w^1, \ldots, w^p, v^1, \ldots, v^q\}$ is a basis of *V* if and only if $\{v^1 + W, \ldots, v^q + W\}$ is a basis of *V*/*W*.

2. Let *V* be a finite dimensional, complex, vector space and $x \in gl(V)$. Assume that $0 \neq v \in V$ is in the kernel of *x* and let $\mathbb{C}v$ be the span of *v* in *V*. Show that $\bar{x}: V/\mathbb{C}v \to V/\mathbb{C}v$, defined by $\bar{x}(w + \mathbb{C}v) = x(w) + \mathbb{C}v$ is well-defined. If $\{v^1 + \mathbb{C}v, \dots, v^r + \mathbb{C}v\}$ is a basis of $V/\mathbb{C}v$ with respect to which \bar{x} is strictly upper triangular show that $\{v, v^1, \dots, v^r\}$ is a basis of *V* with respect to which *x* is strictly upper triangular.

3. Let $L = b(n, \mathbb{C})$ be the Lie algebra of all $n \times n$ upper triangular matrices and for i = 1, ..., n let $e^i \in \mathbb{C}^n$ be the vector with a 1 in the *i*th entry and zeroes elsewhere. For each k = 1, ..., n let W_k be the span of $\{e^1, ..., e^k\}$.

- a) Show that W_k is a submodule of the *L*-module \mathbb{C}^n .
- b) If $x \in L$ what is the matrix for the action of x on W_k with respect to the basis $\{e^1, \ldots, e^k\}$?
- c) If $x \in L$ what is the matrix for the action of \bar{x} on \mathbb{C}^n/W_k with respect to the basis $\{e^{k+1} + W_k, \dots, e^n + W_k\}$?

4. Let *L* be a Lie algebra and let $\theta: V \to W$ be an *L*-module homomorphism between *L*-modules *V* and *W*. Show that $\bar{\theta}: V / \ker(\theta) \to \operatorname{im}(\theta)$ is an *L*-module isomorphism where $\bar{\theta}(v + \ker(\theta)) = \theta(v)$.

5. Let *A* be a subalgebra of a Lie algebra *L* and define the *normaliser* of *A* in *L* by

$$N_L(A) = \{x \in L \mid [x, a] \in A \ \forall a \in A\}.$$

- a) Show that $N_L(A)$ is a subalgebra of *L*.
- b) Show that $A \subset N_L(A)$ and, moreover, A is an ideal in $N_L(A)$.
- c) Show that $N_L(A)$ is the largest subalgebra of *L* containing *A* in which *A* is an ideal.