Lie Algebras IV 2008

Assignment 3. Due Thursday 15th May.

1. Let W be a subspace of a finite-dimensional vector space V. Let $\left\{w^{1}, \ldots, w^{p}\right\}$ be a basis of W. If v^{1}, \ldots, v^{q} are vectors in V show that $\left\{w^{1}, \ldots, w^{p}, v^{1}, \ldots, v^{q}\right\}$ is a basis of V if and only if $\left\{v^{1}+W, \ldots, v^{q}+\right.$ $W\}$ is a basis of V / W.
2. Let V be a finite dimensional, complex, vector space and $x \in g l(V)$. Assume that $0 \neq v \in V$ is in the kernel of x and let $\mathbb{C} v$ be the span of v in V. Show that $\bar{x}: V / \mathbb{C} v \rightarrow V / \mathbb{C} v$, defined by $\bar{x}(w+\mathbb{C} v)=$ $x(w)+\mathbb{C} v$ is well-defined. If $\left\{v^{1}+\mathbb{C} v, \ldots, v^{r}+\mathbb{C} v\right\}$ is a basis of $V / \mathbb{C} v$ with respect to which \bar{x} is strictly upper triangular show that $\left\{v, v^{1}, \ldots, v^{r}\right\}$ is a basis of V with respect to which x is strictly upper triangular.
3. Let $L=b(n, \mathbb{C})$ be the Lie algebra of all $n \times n$ upper triangular matrices and for $i=1, \ldots, n$ let $e^{i} \in \mathbb{C}^{n}$ be the vector with a 1 in the i th entry and zeroes elsewhere. For each $k=1, \ldots, n$ let W_{k} be the span of $\left\{e^{1}, \ldots, e^{k}\right\}$.
a) Show that W_{k} is a submodule of the L-module \mathbb{C}^{n}.
b) If $x \in L$ what is the matrix for the action of x on W_{k} with respect to the basis $\left\{e^{1}, \ldots, e^{k}\right\}$?
c) If $x \in L$ what is the matrix for the action of \bar{x} on \mathbb{C}^{n} / W_{k} with respect to the basis $\left\{e^{k+1}+W_{k}, \ldots, e^{n}+\right.$ $\left.W_{k}\right\}$?
4. Let L be a Lie algebra and let $\theta: V \rightarrow W$ be an L-module homomorphism between L-modules V and W. Show that $\bar{\theta}: V / \operatorname{ker}(\theta) \rightarrow \operatorname{im}(\theta)$ is an L-module isomorphism where $\bar{\theta}(v+\operatorname{ker}(\theta))=\theta(v)$.
5. Let A be a subalgebra of a Lie algebra L and define the normaliser of A in L by

$$
N_{L}(A)=\{x \in L \mid[x, a] \in A \forall a \in A\} .
$$

a) Show that $N_{L}(A)$ is a subalgebra of L.
b) Show that $A \subset N_{L}(A)$ and, moreover, A is an ideal in $N_{L}(A)$.
c) Show that $N_{L}(A)$ is the largest subalgebra of L containing A in which A is an ideal.

