Lie Algebras IV 2008

Assignment 2. Due Thursday 10th April.

1. Let the Lie algebra $L=L_{1} \oplus L_{2}$ be a direct sum of two arbitrary Lie algebras L_{1} and L_{2}. (This is not necessarily the L_{2} defined in class.)
a) Show that $Z(L)=Z\left(L_{1}\right) \oplus Z\left(L_{2}\right)$.
b) Show that $L^{\prime}=L_{1}^{\prime} \oplus L_{2}^{\prime}$.
c) Prove that L is solvable if and only if L_{1} and L_{2} are solvable.
2. Let L be a Lie algebra. Show that L has a non-zero solvable ideal if and only if L has a non-zero abelian ideal.
3. Let L be a non-abelian Lie algebra. Show that $\operatorname{dim}(Z(L)) \leq \operatorname{dim}(L)-2$.
4. Let L be a two-dimensional vector space with basis x and y. Show that requiring bilinearity and antisymmetry and defining the bracket of x and y by $[x, y]=x$ suffices to define a unique Lie algebra L. (Hint: recall that is enough to check the Jacobi identity on three basis vectors).
5. Let $L=\{X+i Y \mid X, Y \in \operatorname{su}(2, \mathbb{C})\}$. Show that L is a three-dimensional, complex, subalgebra of $g l(2, \mathbb{C})$. Which complex Lie algebra is it ?
6. Consider the Lie algebra $\operatorname{sl}(2, \mathbb{C})$ with basis h, e and f satisfying $[h, e]=2 e,[h, f]=-2 f$ and $[e, f]=h$.
a) Show that if I is an ideal in $\operatorname{sl}(2, \mathbb{C})$ and $h \in I$ then $I=\operatorname{sl}(2, \mathbb{C})$.
b) Show that $\operatorname{sl}(2, \mathbb{C})$ has no non-trivial ideas. (Hint: Let $x=\alpha h+\beta e+\gamma f \in I$ and try to use the fact that $[e, x],[f, x]$ and $[h, x]$ are in I to show that $h \in I$.)
c) Deduce from (b) that $\operatorname{sl}(2, \mathbb{C})$ is semisimple.
