Lie Algebras IV 2008

Assignment 2. Due Thursday 10th April.

1. Let the Lie algebra $L = L_1 \oplus L_2$ be a direct sum of two arbitrary Lie algebras L_1 and L_2 . (This is not necessarily the L_2 defined in class.)

- a) Show that $Z(L) = Z(L_1) \oplus Z(L_2)$.
- b) Show that $L' = L'_1 \oplus L'_2$.
- c) Prove that *L* is solvable if and only if L_1 and L_2 are solvable.

2. Let *L* be a Lie algebra. Show that *L* has a non-zero solvable ideal if and only if *L* has a non-zero abelian ideal.

3. Let *L* be a non-abelian Lie algebra. Show that $\dim(Z(L)) \leq \dim(L) - 2$.

4. Let *L* be a two-dimensional vector space with basis *x* and *y*. Show that requiring bilinearity and antisymmetry and defining the bracket of *x* and *y* by [x, y] = x suffices to define a unique Lie algebra *L*. (Hint: recall that is enough to check the Jacobi identity on three basis vectors).

5. Let $L = \{X + iY \mid X, Y \in su(2, \mathbb{C})\}$. Show that *L* is a three-dimensional, complex, subalgebra of $gl(2, \mathbb{C})$. Which complex Lie algebra is it ?

- 6. Consider the Lie algebra $sl(2, \mathbb{C})$ with basis h, e and f satisfying [h, e] = 2e, [h, f] = -2f and [e, f] = h.
 - a) Show that if *I* is an ideal in $sl(2, \mathbb{C})$ and $h \in I$ then $I = sl(2, \mathbb{C})$.
 - b) Show that $sl(2, \mathbb{C})$ has no non-trivial ideas. (Hint: Let $x = \alpha h + \beta e + \gamma f \in I$ and try to use the fact that [e, x], [f, x] and [h, x] are in I to show that $h \in I$.)
 - c) Deduce from (b) that $sl(2, \mathbb{C})$ is semisimple.