Lie Algebras IV 2008

Assignment 1. Due Tuesday 18th March.

1. Show that \mathbb{R}^{3} with the cross (vector) product as bracket is a Lie algebra. Calculate its centre and derived algebra.
2. Consider the Lie algebra $g l_{n}(\mathbb{C})$.
a) Let $E_{i j}$ be the matrix with a one in the (i, j) position and zeros elsewhere. Show that

$$
\left[E_{i j}, E_{k l}\right]=\delta_{j k} E_{i l}-\delta_{l i} E_{k j}
$$

where $\delta_{i j}$ is the Kronecker delta symbol which is one if $i=j$ and zero otherwise.
b) Using part a) or otherwise find the derived algebra and centre of $g l_{n}(\mathbb{C})$. You might find it useful to compute things like: $\left[X, E_{i j}\right]$, for a general matrix X and $\left[E_{k k}, E_{i j}\right]$ and $\left[E_{i j}, E_{j i}\right]$.
c) Show that the upper triangular matrices in $g l_{n}(\mathbb{C})$ are a Lie subalgebra. Are they an ideal?
3. Let L be an \mathbb{F} vector space with basis e_{1}, \ldots, e_{n}.
a) Let $c_{j k}^{i}$ be a collection of elements of \mathbb{F} for $i, j, k=1, \ldots, n$. If $v=\sum_{i=1}^{n} v^{i} e_{i}$ and $w=\sum_{i=1}^{n} w^{i} e_{i}$ define $[v, w]=\sum_{i, j, k=1}^{n} v^{j} w^{k} c_{j k}^{i} e_{i}$. Find necessary and sufficient conditions for the $c_{j k}^{i}$ to satisfy to make this a Lie bracket and hence L a Lie algebra.
b) If L is a Lie algebra already how do we define the $c_{j k}^{i}$ so that the bracket of L has the form given in part (a) ?
c) The quantities $c_{j k}^{i}$ are called the structure constants of L (with respect to the basis e^{1}, \ldots, e^{n}). Show that two finite dimensional Lie algebras are isomorphic if and only if each has a basis for which it has the same structure constants.
4. Let $\phi: L \rightarrow J$ be an isomorphism of Lie algebras. Show that $Z(J)=\phi(Z(L))$ and $J^{\prime}=\phi\left(L^{\prime}\right)$.
5. Denote by $s u_{2}$ the vector space of all skew-adjoint, traceless, complex 2 by 2 matrices.
a) Show that $s u_{2}$ is a real Lie algebra.
b) Define the Pauli matrices by:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and show that $i \sigma_{1} / 2, i \sigma_{2} / 2, i \sigma_{3} / 2$ is a basis of $\operatorname{su}(2)$. Compute the structure constants of $\operatorname{su}(2)$ for this basis.
c) Using part a) or by directly defining an isomorphism show that \mathbb{R}^{3} with the cross product is isomorphic to $s u(2)$ as a Lie algebra.

Note: If X is a complex matrix then X is traceless if $\operatorname{tr}(X)=0$ and X is skew-adjoint if $X^{*}=-X$ where X^{*} is the complex conjugate, transpose of X.

