Lie Algebras IV 2008

Assignment 1. Due Tuesday 18th March.

1. Show that \mathbb{R}^3 with the cross (vector) product as bracket is a Lie algebra. Calculate its centre and derived algebra.

- 2. Consider the Lie algebra $gl_n(\mathbb{C})$.
 - a) Let E_{ij} be the matrix with a one in the (i, j) position and zeros elsewhere. Show that

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{li} E_{kj}$$

where δ_{ij} is the Kronecker delta symbol which is one if i = j and zero otherwise.

- b) Using part a) or otherwise find the derived algebra and centre of $gl_n(\mathbb{C})$. You might find it useful to compute things like: $[X, E_{ij}]$, for a general matrix X and $[E_{kk}, E_{ij}]$ and $[E_{ij}, E_{ji}]$.
- c) Show that the upper triangular matrices in $gl_n(\mathbb{C})$ are a Lie subalgebra. Are they an ideal ?
- 3. Let *L* be an \mathbb{F} vector space with basis e_1, \ldots, e_n .
 - a) Let c_{jk}^i be a collection of elements of \mathbb{F} for i, j, k = 1, ..., n. If $v = \sum_{i=1}^n v^i e_i$ and $w = \sum_{i=1}^n w^i e_i$ define $[v, w] = \sum_{i,j,k=1}^n v^j w^k c_{jk}^i e_i$. Find necessary and sufficient conditions for the c_{jk}^i to satisfy to make this a Lie bracket and hence *L* a Lie algebra.
 - b) If *L* is a Lie algebra already how do we define the c_{jk}^i so that the bracket of *L* has the form given in part (a) ?
 - c) The quantities c_{jk}^i are called the *structure constants* of *L* (with respect to the basis e^1, \ldots, e^n). Show that two finite dimensional Lie algebras are isomorphic if and only if each has a basis for which it has the same structure constants.
- 4. Let $\phi: L \to J$ be an isomorphism of Lie algebras. Show that $Z(J) = \phi(Z(L))$ and $J' = \phi(L')$.
- 5. Denote by su_2 the vector space of all skew-adjoint, traceless, complex 2 by 2 matrices.
 - a) Show that su_2 is a real Lie algebra.
 - b) Define the Pauli matrices by:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

and show that $i\sigma_1/2$, $i\sigma_2/2$, $i\sigma_3/2$ is a basis of su(2). Compute the structure constants of su(2) for this basis.

c) Using part a) or by directly defining an isomorphism show that \mathbb{R}^3 with the cross product is isomorphic to su(2) as a Lie algebra.

Note: If *X* is a complex matrix then *X* is traceless if tr(X) = 0 and *X* is skew-adjoint if $X^* = -X$ where X^* is the complex conjugate, transpose of *X*.