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1. Review

We have the usual notation R for the real numbers, Rn for n-tuples of real numbers and N � f1;2;3; : : : g for

the natural numbers. Recall that If x � �x1; : : : ; xn� and y � �y1; : : : ; yn� are in Rn then kxk �
qPn

i�1�xi�2

and hx;yi �
Pn
i�1 xiyi. These satisfy

hx;yi � kxkkyk Cauchy’s inequality;
kx �yk � kxk � kyk Triangle inequality

and
maxfjx1j; : : : ; jxnjg � kxk �

p
nmaxfjx1j; : : : ; jxnjg:

1
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Note 1.1. Recall from Real Analysis that Rn with the Euclidean metric d�x;y� � kx�yk is a metric space. We
don’t need the metric notion for this course but we will use many of the other notions of metric spaces such
as open balls, open sets, sequences, limits and continuous functions but usually only for the metric space Rn.
Those of you have who have done Topology and Analysis will recall that Rn with this norm is an example of
a normed vector space.

The open ball around x 2 Rn of radius � > 0 is B�x; �� � fy 2 Rn j kx � yk < �g and a subset U � Rn is
called open if for every x 2 U there is some � > 0 such that B�x; �� � U .

A sequence in Rn is a function N � f1;2; : : : g ! Rn usually denoted by its set of values x1; x2; : : : or �xn�1n�0
or often just �xn�. A sequence �xn� has limit x 2 Rn if for all � > 0 there is an N such that for all n � N we
have kxn � xk < �. In such a case we also say that xn converges to x and write limn!1 xn � x.

Lemma 1.1. A sequence �xn� has limit x 2 Rn if and only if limn!1 kxn � xk � 0.

Proposition 1.2 (Properties of limits of sequences).

(1) If xm � �x1
n; : : : ; xnm� 2 Rn then limm!1 xm � x � �x1; : : : ; xn� if and only if limm!1 xim � xi for all

i � 1; : : : ; n.
(2) If xn ! x and yn ! y and �;� 2 R then �xn � �yn ! �x � �y .

Lemma 1.3. If xn ! x then limm;n!1 kxn � xmk ! 0.

A sequence with limm;n!1 kxn � xmk ! 0 is called Cauchy.

Theorem 1.4. Every Cauchy sequence in Rn converges.

Definition 1.5. Let a 2 U � Rn, U open and f : U �fag ! Rm. We say that f has limit L at a if 8� > 0 9� > 0
such that if kx � ak < � and x 2 U then kf�x�� Lk < �.
Proposition 1.6. A function f : U � fag ! Rm has limit L at a if and only if for all sequences �xn� � U � fag
with xn ! x we have f�xn�! L.

Proposition 1.7 (Properties of limits).

(1) Let f : U � fag ! Rm and let f�x� � �f 1�x�; : : : ; fm�x� where f i : U � fag ! R for each i � 1; : : :m.
Then limx!a f�x� � f�a� if and only if for every i � 1; : : :m we have limx!a f i�x� � f i�a�

(2) Let f ; g : U � fag ! Rm with limx!a f�x� � L and limx!a g�x� � J. If �;� 2 R then limx!a�f�x��
�g�x� � �L� �J.

Definition 1.8. LetU be open in Rn and f : U ! Rm. We say that f is continuous ata 2 U if limx!a f�x� � f�a�
and we say that f is continuous on U if continuous at every a 2 U .

Proposition 1.9. A function f is continuous at a if and only if limx!a kf�x�� f�a�k � 0.

Proposition 1.10. A function f : U ! Rm is continuous at a if and only if for every sequence with xn ! a we
have f�xn�! f�a�.
Proposition 1.11 (Properties of continuous functions).

(1) If U is open in Rn and f ; g : U ! Rm are continuous and �;� 2 R then �f � �g is continuous.
(2) If U is open in Rn and f : U ! Rm then f � �f 1; : : : ; fn� is continuous if and only if each f i : U ! R is

continuous for every i � 1; : : : ; n.

(3) If f : U ! Rm and g : V ! Rk and U is open in Rn and V is open in Rk and f�U� � V then f and g
continuous implies that g � f is continuous.

Let X � Rn. Recall that f : X ! X is called a contraction if there exists 0 � K < 1 such that for all x;y 2 X
we have kf�x�� f�y�k � Kkx �yk.
Proposition 1.12 (Contraction mapping theorem). If f : B�0; r �! B�0; r � is a contraction then there is a unique
x 2 B�0; R� such that f�x� � x.
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Note 1.2. Recall from Real Analysis that the contraction mapping theorem is usually proved for a contraction
on a complete metric space. It reduces to this case as B�0; r � is a closed subset of the complete metric space
Rn and hence complete.

2. Differentiation in Rn.

Definition 2.1. Let U be open in Rn and f : U ! Rm. We say that f is differentiable at a 2 U if there is a
linear map L : Rn ! Rm such that

lim
h!0

kf�a� h�� f�a�� L�h�k
khk � 0:

Lemma 2.2. If f is differentiable at a then the L in the definition is unique.

If f is differentiable at a we denote the linear map L by f 0�a�. If f is differentiable at every a 2 U we say
that f is differentiable on U .

Proposition 2.3. Let U be open in Rn and f : U ! Rm. Define f i : U ! R for i � 1; : : : ;m by f�x� �
�f 1�x�; : : : ; fm�x� for all x 2 U . Then f is differentiable at a 2 U if and only if each of the f i is differ-
entiable at a and f 0�a� � �f 10�a�; : : : ; fm0�a��.

Lemma 2.4. The function f is differentiable at a if and only if there exists a linear function L, an � > 0 and a
function R : B�0; ��! Rm such that f�a� h� � f�a�� L�h�� R�h� and limh!0 kR�h�k=khk � 0.

Proposition 2.5. If L : Rn ! Rm is linear and v 2 Rm then f�x� � L�x�� v is differentiable on all of Rn and
f 0�x� � L.

Proposition 2.6. If f : U ! Rm is differentiable at a then f is continuous at a.

Lemma 2.7. If f is differentiable at a then 8� > 0 9� > 0 such that if khk < � then kf�a � h� � f�h�k �
�kf 0�a�k � ��khk.
Proposition 2.8. If f and g are differentiable at a 2 Rn and �;� 2 R then �f � �g and fg are differentiable
at a with ��f � �g�0�a� � �f 0�a�� �g0�a� and �fg�0�a� � f�a�g0�a�� g�a�f 0�a�.
Proposition 2.9 (Chain Rule). Let f : U ! Rm and g : V ! Rk where U is open in Rn and V is open in Rm with
f�U� � V . Then if f is differentiable at a and g is differentiable at f�a� then g � f is differentiable at a and
�g � f�0�a� � g0�f �a�� � f 0�a�.
Proposition 2.10. If U � Rn and f : U ! Rm is differentiable at a and v 2 Rn then

f 0�a��v� � d
dt
f�a� tv�

����
t�0
:

Corollary 2.11. Let f be as above and write f � �f 1; : : : ; fm�. Let ei be the vector with a 1 in the ith place and
zeros elsewhere. Then

f 0�a��ei� �
 
@f 1

dxi
�a�; : : : ;

@fm

dxi
�a�

!
:

so that the linear map f 0�a� : Rn ! Rm is the Jacobian matrix

J�f��a� � @f
i

@xj
�a�:

2.1. Functions of class Ck.

Definition 2.12. Let f : U ! R for U open in Rn. We say that f is (of class) Ck if all partial derivatives of
f exist and are continuous on U up order k. We write C0 for continuous functions and C1 or smooth for
functions which are in Ck for every k. The set of all Ck functions on U is denoted by Ck�U� or Ck�U;R�.

Let f : U ! R for U open in Rn. We say that f is Ck if each f i : U ! R is Ck where f � �f 1; : : : ; fm�. Again
we write Ck�U;Rm� for the set of all such f .

Proposition 2.13. If f 2 C1�U� then f is differentiable at u.
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Proposition 2.14. If f 2 C2�U� then
@2f
@xi@xj

� @2f
@xj@xi

on U . Similarly if f is Ck for k � 2 then all partial derivatives up to order including k are independent of order.

Proposition 2.15. Ck�U;Rm� is a vector space.

Proposition 2.16 (Chain Rule). Let f : U ! Rm and g : V ! Rk where U is open in Rn and V is open in Rm with
f�U� � V . Assume that f and g are C1 then

@�g � f�j
@xi

�a� �
mX
l�1

@gj

@xl
�f �a��

@f l

@xi
�a�:

for every i � 1; : : : ; n and j � 1; : : : ; k.

2.2. Mean Value Theorem. For any x0 and x1 in Rn we define �x0; x1� to be the line segment joining x0 to
x1 that is f�1� t�x0 � tx1 j t 2 �0;1�g.

Proposition 2.17 (Mean Value Theorem). If U is open in Rn and f : U ! Rm is differentiable and �x0; x1� � U
and u 2 Rm then 9�u 2 �x0; x1� such that

hf�x1�;ui � hf�x0�;ui � hf 0��u��x1 � x0�;ui:

Corollary 2.18. If U is open in Rn and h : U ! Rm is differentiable and kh0���k � � 8� 2 �x0; x1� then
kh�x0�� h�x1�k < �kx0 � x1k.

2.3. Inverse Function Theorem.

Theorem 2.19 (Inverse Function Theorem). Let U be open in Rn and f : U ! Rn be Ck for k � 1. Assume that
f 0�a� is invertible for some a 2 U . Then there is an open set V � U with a 2 V and such that:
(1) f�V� is open,
(2) f : V ! f�V� is invertible,
(3) f�1 is Ck, and
(4) �f�1�0�f �a�� � �f 0�a���1.

Corollary 2.20 (Open mapping theorem). Let U be open in Rn and f : U ! Rn be such that f 0�x� is invertible
for all x 2 U . Then f�U� is open in Rn.

Definition 2.21. If U and V are open in Rn and f : U ! V is Ck with a Ck inverse then f is called a (Ck)
diffeomorphism.

For the implicit function theorem we need the following notation. If x 2 Rn and y 2 Rm then we denote by
�x;y� the obvious element Rn �Rm.

Theorem 2.22 (Implicit Function Theorem). Let U be open in Rn�m, �x0; y0� 2 U and F : U ! Rm be Ck. If
F�x0; y0� � 0 and

@F
@y
�x0; y0� �

0BBB@
@F1

@y1 �x0; y0� : : : @F1

@ym �x0; y0�
...

. . .
...

@Fm
@y1 �x0; y0� : : : @Fm

@ym �x0; y0�

1CCCA
is non-singular then there exists an open set V � Rn containing x0 and a Ck function f : V ! Rm, such that
F�x; f �x�� � 0 for all x 2 V .

3. Submanifolds

Definition 3.1. A subset S � RN is called a submanifold of dimension n if for all s 2 S there exists a U open
in RN , containing s, and a smooth map� : U ! Rn such that��U� is open, � : U ! ��U� is a diffeomorphism
and

S \U � fx 2 U j ��n�1�x�; : : : ;�N�x�� � 0g:
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Theorem 3.2. Let S � RN then the following are equivalent.
(1) S is a submanifold of dimension n;
(2) for every s 2 S there is an open set U � RN containing s and a smooth function F : U ! RN�n such that
F 0�x� is onto for all x 2 S \U and S \U � fx 2 U j F�x� � 0g;
(3) for all s 2 S there exists U open in RN such that S \ U is the graph of a smooth function of n of the N
variables;
(4) for all s 2 S there is a V open in RN containing s and U open in Rn and a  : U ! V which is one to one
with  0�x� one to one for all x 2 U and such that S \ V �  �U�.
Corollary 3.3. If U is open in RN and F : U ! RN�n is smooth with F 0�x� onto for all x 2 S � F�1f0g then S is
a submanifold of dimension n.

Definition 3.4. Let S � RN be an n dimensional submanifold. If U is an open set in RN and F : U ! RN�n

is smooth with F 0�s� onto for all s 2 S \ U and S \ U � fs 2 U j F�s� � 0g then F is called a local defining
equation for S.

Definition 3.5. Let S � RN be an n dimensional submanifold. If U is an open subset of Rn and V an open
subset of RN and  : U ! V is smooth and one to one with  0�x� one to one for all x 2 U and  �U� � S \ V
then  is called a local parametrisation of S.

3.1. Tangent space to a submanifold.

Definition 3.6. Let s be a point in a submanifold S � RN . Let � > 0. Then a smooth map 
 : ���; ��! S � RN

with 
�0� � s is a called a smooth path in S through s.

Definition 3.7. Define TsS to be the union of all the vectors 
0�0� for 
 a smooth path in S through s. Call it
the tangent space to S at s.

Proposition 3.8. TsS is an n-dimensional subspace of RN .

Proposition 3.9. If F is a local defining equation for S defined on an open set containing s then TsS � kerF 0�s�.
If  is a local parametrisation for S with  �x� � s then TsS � im  0�x�. Moreover @ 

@x1 �x�; : : : ; @ @xn �x� are a
basis for TsS.

3.2. Smooth functions on submanifolds. Let S � RN be a submanifold and let f : S ! R be a function.

Definition 3.10. We say that f is a smooth function if there is an open set U � RN with S � U and a smooth
function f̂ : U ! R such that for any s 2 S we have f̂ �s� � f�s�.
Proposition 3.11. Let S � RN be a submanifold and f : S ! R a function.
(1) If  : U ! S is a parametrisation and f is smooth then f � : U ! R is smooth.
(2) If for every s 2 S there is a parametrisation  : U ! S with s 2  �U� such that f � : U ! R is smooth
then f is smooth.

Proposition 3.12. Let S � RN be a submanifold and  : U ! S and � : V ! S be parametrisations with
 �U� � ��V� then  �1 � � : V ! U is a diffeomorphism.

Let S be a submanifold and f : S ! R a smooth map. Let f̂ : U ! R be a smooth extension of f to an open set
U containing S. Then f̂ 0�s� : RN ! R and we denote by f 0�s� : TsS ! R the restriction of f̂ 0�s� to TsS � RN .

Lemma 3.13. f 0�s� : TsS ! R is independent of the choice of extension f̂ .

Definition 3.14. If f : S ! Rm and each f i : S ! R is smooth where f � �f 1; : : : ; fm� then we say that f is
smooth.

Proposition 3.15. If f : S ! Rm is a smooth map from a submanifold S which has its image inside a submanifold
T � Rm then for any s 2 S we have that f 0�s��TsS� � Tf�s�T .

4. Geometry of curves

Definition 4.1. A curve is a one-dimensional submanifold.
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If c is a point in a curve C then TcC is one-dimensional so that TcC � f0g has two connected components. A
continuous choice of one of these two components at each point of C is called an orientation and a curve with
an orientation is called an oriented curve.

Definition 4.2. A parametrised curve C is a curve for which there is a parametrisation 
 : �a; b� ! C with

�a;b� � C .

For a parametrisation 
0�t� � 0. If 
0�t� is in the chosen half of T
�t�C for an oriented curve C then we say
the parametrisation is oriented.

Definition 4.3. We say a parametrised curve is parametrised by arc length if k
�t�k � 1 for all t.

Lemma 4.4. If 
�t� and e
�t� are two arc length parametrisations of a curve C then there is a t0 2 R such that

�t� � e
�t � t0� for all t.

Definition 4.5. Then unit normal vector field T on a parametrised curve C is defined by T � 
0�t�=k
0�t�k.
Lemma 4.6. If 
�t� is parametrised by arc length then h
00�t�; 
0�t�i � 0.

Definition 4.7. If C is a curve with an arc length parametrisation 
�t� then the curvature of C at c � 
�t� is
��c� � k
00�t�k.
Proposition 4.8. If C is a curve and 
�t� is a (not necessarily arc-length) parametrisation then

� � 1
k
0k2







00 � 
0 h
0; 
00ik
0k2







� 1
k
0k2

 
k
00k2 � h


0; 
00i2
k
0k2

!1=2

4.1. Curves in R3.

Definition 4.9. Let C � R3 be a curve. Define N � T 0=kT 0k the principal normal to 
 and B � T �N the unit
binormal.

Proposition 4.10 (Frenet formula). Let Ṫ , Ṅ and Ḃ denote differentiation with respect to arc-length. Then we
have

Ṫ � �N Ṅ � ��T � �B Ḃ � ��N
for a function � on the curve called the torsion of the curve.

5. Geometry of surfaces

Let Ö � R3 be a surface. Then TsÖ?, the orthogonal space to the tangent space TsÖ, is one-dimensional so
if zero is removed there are two connected halves. In other words there are two possible unit normals. An
orientation for Ö is a choice of unit normal n�s� 2 TsÖ? continuously across the surface. An oriented surface
is a surface with an orientation. If  : U ! Ö is a parametrisation we say it is oriented if

n �
@ 
@x1 � @ 

@x2


 @ @x1 � @ 
@x2




 :
The unit normal defines a map n : Ö! S2 called the Gauss map.

Proposition 5.1. Let s 2 Ö and let v 2 TsÖ. Let the unit normal at s ben. Then 9� > 0 and a map 
 : ���; ��! Ö
such that 
�0� � s, 
0�0� � v and 
�t� � a�t�v � b�t�n for some functions a and b.

Proposition 5.2. The curvature of the curve 
 in Prop. 5.1 is given by hn;
00�0�i=k
00�0�k2.

If  : U ! Ö are local parameters for a surface Ö with  �x� � s and v and w are in TsÖ define the second
fundamental form � by

��s��v;w� �
2X

i;j�1

viwj

*
@2 
@xi@xj

�x�;n
+

where v �
P2
i�1 vi

@ 
@xi and w �

P2
i�1wi

@ 
@xi .
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Proposition 5.3. Let � be the second fundamental form at a point s of a surface Ö then:
(1) ��v;w� � �hdn�v�;w�i � �hdn�w�;vi,
(2) � is independent of the parametrisation,
(3) if kvk � 1 and 
 is chosen as in Prop. 5.1 then ��v;v� is the curvature of 
 at s.

Definition 5.4. The first fundamental form at s 2 Ö is the inner product g�v;w� � hv;wi.
Definition 5.5. Define a function Õ�s� : TsÖ! TsÖ by Õ � �dn�s� � �n0�s�.
Clearly ��v;w� � hÕ�v�;w�i. Õ is symmetric so it has orthogonal eigenvectors v1 and v2 with eigenvalues �1

and �2. The directions vi are the directions of greatest and least curvature. The eigenvalues �1, �2 are called
the principal curvatures. Their average �1=2� tr�Õ� is called the mean curvature and their product det�Õ� is
called the Gaussian curvature.

Proposition 5.6. If v1 and v2 are a basis for TsÖ and �ij � ��vi; vj� and gij � g�vi; vj� � hvi; vji thenÕ � �g�1 so that det�Õ� � det��ij�=det�gij�.

6. Integration

6.1. Integration in Rn. Let R be a closed bounded subset of R2 and f : R ! R a continuous function. Define
a partition P to be a collection of rectangles Ri, i � 1; : : : ; n which intersect at most on their edges and which
cover R, that is R �

Sn
i�1 Ri. Denote the area of each Ri by 4Ai. Define a selection for P to be a collection of

points x�i 2 Ri \ R for each i. For each partition and selection consider the sum

NX
i�1

f�x�i �4Ai:

Let mesh�P� �minf4Aig.
Theorem 6.1. There exists a number L such that for every � > 0 there is a � > 0 such that if mesh�P� < � and
x�i is any selection then

���PNi�1 f�x
�
i �4Ai � L

��� < �.
The number L is denoted

R
R f�x�dA and called the integral of f over R.

Proposition 6.2. The integral satisfies:
(i)
R
R fdA is linear in f ,

(ii) if f�x;y� � g�x;y� for all �x;y� 2 R then
R
R f�x;y�dA �

R
R g�x;y�dAwith equality if and only f�x;y� �

g�x;y� for all �x;y� 2 R,
(iii) if f�x;y� � 0 then

R
R f�x;y�dA is the volume in R3 of the region consisting of all �x;y; z� such that

�x;y� 2 R and 0 � z � f�x;y� and
(iv) if R1 and R2 are two regions with R1 \ R2 � ; and R � R1 [ R2 then

R
R1
fdA�

R
R2
fdA �

R
R fdA.

Theorem 6.3 (Fubini). Let R be a closed bounded region in R2 and f : R ! R a continuous function. ThenZ �Z
f�x;y�dx

�
dy �

Z
R
fdA �

Z �Z
f�x;y�dy

�
dx:

All these results generalise to Rn.

Definition 6.4. Let U be an open subset of Rn and f : U ! R be continuous and define the support of f
(supp�f �) to be the closure in U of fx 2 U : f�x� � 0g.
Theorem 6.5 (Change of variable formula). Let U and V be open subsets of Rn and let  : U ! V be a diffeo-
morphism. Let f : V ! R have support which is closed and bounded in Rn thenZ

U
fdx1 : : : dxn �

Z
V
f � jdet�J� ��jdx1 : : : dxn

where

J� � �

0BBB@
@ 1

@x1 : : : @ 1

@xn
...

. . .
...

@ n
@x1 : : : @ n

@xn

1CCCA
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is the Jacobian matrix of  .

6.2. Volume forms and integration. Let V be a vector space of dimension n. An n-form is a multilinear and
totally antisymmetric map

! : V � � � � � V
n times

! R:

Multilinear means linear in each of the n factors separately, that is for anywi; v1; : : : ; vn 2 V and a;b 2 R we
have

!�v1; : : : ; avi � bwi; : : : ; vn� � a!�v1; : : : ; vi; : : : ; vn�� b!�v1; : : : ;wi; : : : ; vn�:
Totally antisymmetric means that if � is a permutation of the numbers 1; : : : ; n with sign1 denoted by sign���
then

!�v��1�; : : : ; v��n�� � sign���!�v1; : : : ; vn�:
Notice that if ! is an n-form then

!�v1; : : : ; vi; : : : ; vj ; : : : ; vn� � �!�v1; : : : ; vj ; : : : ; vi; : : : ; vn�

and hence
!�v1; : : : ; v; : : : ; v; : : : ; vn� � 0:

If v1; : : : ; vn is a basis of V we define an n-form �v1; : : : ; vn� by

�v1; : : : ; vn��w1; : : : ;wn� � det�Xij�

where wi �
Pn
j Xijvj for each i � 1; : : : ; n.

We denote the set of all n-forms by det�V��. It is a vector space and we have

Proposition 6.6. The space of all n-forms, det�V��, is one dimensional. If ! is an n-form and v1; : : : ; vn is a
basis then ! �!�v1; : : : ; vn��v1; : : : ; vn�.

Corollary 6.7. Let w1; : : : ;wn and v1; : : : ; vn be bases of V . Let wi �
Pn
j�1Xijvj , then

�v1; : : : ; vn� � det�Xij��w1; : : : ;wn�:

If Ö � RN is an n dimensional submanifold then each tangent space TsÖ is n dimensional and we can form
det�TsÖ�� the space of all n-forms on TsÖ. As det�TsÖ�� is one dimensional it follows that det�TsÖ�� � f0g
has two connected components. We call Ö oriented if we have picked one of these two components at each s
on Ö in a continuous manner. If! is in the chosen half of det�TsÖ���f0g then we call it positive. If : U ! Ö
is a parametrisation then we say it is oriented if the n form � @ @x1 ; : : : ; @ @xn � is positive.

An n form ! on an n dimensional submanifold is a smooth choice of an !�s� 2 det�TsÖ�� for every s 2 Ö.
To say what smooth means we choose a parametrisation  : U ! Ö. Then if  �x� � s we have

!�s� �! �s�
�
@ 
@x1

�x�; : : : ;
@ 
@xn

�x�
�

where from Prop. 6.6 we have that

! �s� �!�s�
�
@ 
@x1

� �1�s��; : : : ;
@ 
@xn

� �1�s��
�
:

We call ! smooth if whenever we choose a parametrisation like this the function ! :  �U�! R is smooth.

Proposition 6.8. If � : V ! Ö and  : U ! Ö are parametrisations and ��V� �  �U� then

! �
�
det�J���1 � �� � �1

�
!�:

If � and  are both oriented parametrisations then det�J���1 � �� > 0.

Note 6.1. This proposition shows that if !� is smooth then so also is ! .

Definition 6.9. If! is a smooth n-form on a submanifold Ö we define its support to be the closure of the set
of points at which it is not zero.

1If �̂ is the matrix whose �i; j�th entry is 1 if ��i� � j and zero otherwise then sign��� � det��̂�.
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Definition 6.10. If  : U ! Ö is an oriented parametrisation and ! a smooth n form with support in  �U�
we define

I �!� �
Z
U
! � dx1 : : : dxn:

Proposition 6.11. If � : V ! Ö is another oriented parametrisation then I �!� � I��!�.

Note 6.2. To be sure that the integral exists we should really require that the support of ! be compact, ie
closed and bounded in RN .

Definition 6.12. Let fU�g�2I be an open cover of Ö. A partition of unity subordinate to this cover is a collection
of smooth functions �� : Ö! �0;1� � R such that supp���� � U� and

P
� �� � 1.

Note 6.3. To make sure the sum in the integral makes sense we should impose a condition called local finite-
ness. For this purposes of this course the sums can be assumed to be finite so we will ignore this point.

If ! is an n form with support in the image of some (oriented) parametrisation  : U ! Ö then we defineZ
Ö! � I �!�:

If! is a more general form we assume that it is possible to find a collection of parametrisations  � : U� ! Ö
with Ö � S ��U�� and a partition of unity subordinate to f ��U��g and we defineZ

Ö! �
X
�

Z
M
��!:

Note 6.4. (1) The support of ��! is in  ��U��.
(2) The existence of the partition of unity required is guaranteed in much generality which we will not go into
in this course. We shall assume it exists.

Proposition 6.13. The integral of an n form just defined is independent of the choice of parametrisations and
partition of unity.

6.3. Volume forms.

Lemma 6.14. If V is a vector space with an inner product h ; i and e1; : : : ; en and f1; : : : ; fn are orthonormal
bases then �e1; : : : ; en� � ��f1; : : : ; fn�.

Definition 6.15. If Ö � RN is an oriented submanifold and e1; : : : ; en is an orthonormal basis of TsÖ and
�e1; : : : ; en� is positive we define volÖ�s� � �e1; : : : ; en�, the volume form of Ö.

Note 6.5. (1) Orthonormal means orthonormal with respect to the inner product on RN restricted to TsÖ.
(2) The Lemma guarantees that the volume is independent of the choice or orthonormal basis.
(3) When its obvious from context we will drop the Ö from volÖ and just write vol.

Proposition 6.16. Let  : U ! Ö be a parametrisation of Ö. Let gij � h @ @xi ;
@ 
@xj i then

volÖ � det�gij��1=2
�
@ 
@x1

; : : : ;
@ 
@xn

�
:

Note 6.6. It follows that volÖ is a smooth n form.

Lemma 6.17. If V � R3 is a two dimensional subspace and ! is any two form on V then there is an n 2 V?
(not necessarily unit length) such that for any v and w in V we have !�v;w� � hv �w;ni.

Note 6.7. This lemma shows that orienting a surface by chosing a normal is the same as orienting a surface
by choosing one half of det�TsÖ��.
Proposition 6.18. If Ö � R3 is an oriented surface andn is the unit normal to Ö at s which defines the orientation
then

volÖ�v;w� � hv �w;ni
for any v and w in TsÖ.
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6.4. One forms. Let Ö be a submanifold and f : Ö ! R a smooth function. Then for any s 2 Ö we have that
df�s� � f 0�s� : TsÖ! R is a linear map. In particular if : U ! Ö is a parametrisation and b �  �1 then each
of the components of b � � b 1; : : : ; b n� is a function b i :  �U� ! R and hence d b i�s� : TsÖ ! R is a linear
map for any s 2  �U�. We have

Proposition 6.19. The linear maps d b 1�s�; : : : ; d b n�s� are a basis of the dual space TsÖ� satisfying

d b i�s�� @ 
@xj

�x�
�
� �ij �

(
1 if i � j
0 if i � j

if  �x� � s.
Definition 6.20. A one form � is a choice of linear map ��s� : TsÖ ! R for every s. Any one form can be
expanded as ��s� �

Pn
i�1 �i�s�d b i�s� and we say � is smooth if each of the �i :  �U�! R is smooth.

Proposition 6.21. If  : U ! Ö and � : V ! Ö are parametrisations and  �U� � ��V� then

db�i�s� � nX
j�1

@���1 � �i
@xj

� �1�s��d b j�s�
so that if ��s� �

Pn
i�1 �i�s�d b i�s� and �̃�s� �

Pn
i�1 �̃i�s�db�i�s� then

�i�s� �
nX
j�1

�̃j�s�
@���1 � �j

@xi
� �1�s��:

Definition 6.22. If V is a two dimensional vector space and � and � are one forms we define � ^ �, their
wedge product, by

��^ ���v;w� � ��v���w����w���v�:
for any v and w in V .

Lemma 6.23. If  : U ! Ö is a parametrisation of a surface Ö then

d b 1 ^ d b 2 �
�
@ 
@x1

;
@ 
@x2

�
:

Proposition 6.24. (1) If  : U ! Ö is a parametrisation of a surface Ö and � is a one form then the two form
d� defined by

d��s� �
2X
i�1

d�i�s�^ d b i�s�
�
�
@�2 � 
@x1

� �1�x��� @�1 � 
@x2

� �1�x��
�
d b 1�s�^ d b 2�s�:

is independent of the parametrisation.
(2) If f is a function on Ö then d�f�� � df ^ �� fd�.

Definition 6.25. A closed surface is a two dimensional submanifold of R3 which is closed and bounded. It
follows that it has no boundary.

Proposition 6.26 (Weak Green’s Theorem). If � is a one form on an oriented closed surface Ö then
RÖ d� � 0.

7. Gauss-Bonnet Theorem

Definition 7.1 (Pulling back two forms). If f : Ö1 ! Ö2 is a smooth map between two submanifolds of dimen-
sion n and ! is an n form on Ö2 we define an n form on Ö1 called f��!�, the pull-back of !, as follows. If
v1; : : : ; vn are in TsÖ then f 0�s��v1�; : : : ; f 0�s��vn� are in Tf�s�Ö2 and so we define

f��!��s��v1; : : : ; vn� �!�f�s���f 0�s��v1�; : : : ; f 0�s��vn��:

If  : U ! Ö1 is a local parametrisation and v �
Pn
i�1 vi

@ 
@xi and w �

Pn
i�1wi

@ 
@xi then f 0�s��v� �

Pn
i�1 vi

@f� 
@xi

and f 0�s��w� �
Pn
j�1wj

@f� 
@xj and hence

f��!��v;w� �
nX

i;j�1

viwj!�f�s��
�
@f � 
@xi

;
@f � 
@xj

�
:
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Proposition 7.2. If Ö � R3 is a surface with Gaussian curvature R and n : Ö! S2 is the unit normal then

R volÖ � n��vol2S�:

Note 7.1. We choose orientations here so that volÖ�v;w� � hv �w;ni and similarly for S2 with n there being
the outward normal.

Proposition 7.3. Let Öt be a family of closed oriented surfaces in R3 depending smoothly on a parameter t.
Define ��X� � hdndt � dn�X�;ni then

d
dt
Rt volt � d�:

Corollary 7.4. Let Öt be a family of closed oriented surfaces in R3 depending smoothly on a parameter t. ThenRÖt Rt vol is independent of t.

Proposition 7.5. For a sphere we have
1

2�

Z
S2
R vol � 2:

Definition 7.6. We say a surface Ö0 is obtained from a surface Ö by adding a handle if we remove two disks
from Ö and attach to the two resulting circles in Ö each end of a cylinder.

Proposition 7.7. If the oriented closed surface Ö0 is obtained from the oriented closed surface Ö by adding a
handle then

1
2�

Z
Ö0 R vol � 1

2�

Z
Ö R vol�2

Corollary 7.8. If Ö is obtained from a sphere by adding g handles then

1
2�

Z
Ö R vol � 2� 2g:

Theorem 7.9. If Ö is a closed surface in R3 then Ö is homeomorphic to a sphere with g handles.

Note 7.2. The quantity g � g�Ö� is called the genus of Ö and can be calculated from

g�Ö� � 1
2

�
2� 1

2�

Z
Ö R vol

�

7.1. Tessellations.

Definition 7.10. Let Ö be a surface in R3. A tessellation T for Ö is:
(1) a set of points v1; : : : ; vn in Ö called vertices,
(2) a collection of curves e1; : : : ; em called edges which join vertices such that (i) every vertex has at least two
edges ending at it and (ii) edges meet only at vertices, and
(3) a collection of subsets f1; : : : ; fr of Ö called faces such that (i) the boundary of every face is a union of
edges and each face is homeomorphic to a polygon in R2.

A tessellation where every face has three edges is called a triangulation.

Definition 7.11. Let T be a tessellation of a surface Ö and let v be the number of vertices, e the number of
edges and f the number of faces. Define

��Ö; T � � v � e� f :
Proposition 7.12. Let Ö be a surface and T and T 0 tessellations. Then ��Ö; T � � ��Ö; T 0�.
Definition 7.13. If Ö is a surface we define its Euler characteristic ��Ö� to be ��Ö; T � for some some tessellation.

Proposition 7.14. If Ö is a surface of genus g, ie it is obtained from a sphere by adding g handles then
��Ö� � 2� 2g.

Note 7.3. This gives an alternative way of calculating g�Ö� namely g�Ö� � �1=2��2� ��Ö�.
Theorem 7.15 (Gauss-Bonnet). If Ö is a closed oriented surface then

1
2�

Z
Ö R vol � ��Ö� � 2� 2g�Ö�:


