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1. Review

We have the usual notation R for the real numbers, R" for n-tuples of real numbersand N  f1; %1'3

the natural nlig‘nbers. Recall that If x  x%;:::;x" andy L.:ii:y™ are in R™ then kxk

and hx;yi &1 x'y!. These satisfy

hx;yi  kxkkyk Cauchy’s inequality;
kx yk kxk kyk Triangle inequality
and
maxfjxtj; i jx"jg  kxk pﬁmaxfjxlj;:::;jx”jg:
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Note 1.1. Recall from Real Analysis that R™ with the Euclidean metricd x;y kx ykisametric space. We
don’t need the metric notion for this course but we will use many of the other notions of metric spaces such
as open balls, open sets, sequences, limits and continuous functions but usually only for the metric space R".
Those of you have who have done Topology and Analysis will recall that R™ with this norm is an example of
a normed vector space.

The open ball around x 2 R" of radius > 0is B x; fy 2R"jkx vyk< gandasubsetU R"is
called open if for every x 2 U there is some > 0 such that B x; u.

A sequence in R™ is a function N f1;2;:::g ¥ R" usually denoted by its set of values X;;X2;::: or Xp % 0
or often just X, . Asequence X haslimitx 2 R" if forall > 0 thereisan N such thatforalln N we
have kx, Xk < . In such a case we also say that x,, converges to x and write limps1 Xn  X.

Lemma 1.1. A sequence X has limit x 2 R" if and only if limh11 kx, Xk O.

Proposition 1.2 (Properties of limits of sequences).
Q) If xXm xLiioxD 2 RM then limpmyg Xm X x1; i x™ ifand only if limme1 x5, x!' for all

2 fxn ¥ xXandyn ¥ yand ; 2Rthen Xxp yn? X V.

Lemma 1.3. If Xn ¥ X then limm:nr1 kXn Xmk T 0.

A sequence with limmnra KXn  Xmk T 0 is called Cauchy.
Theorem 1.4. Every Cauchy sequence in R™ converges.

Definition 1.5. Leta2U R", Uopenand f:U fag ! R™. Wesaythatf haslimitLataif8 >09 >0
such thatifkx ak< andx 2 U thenkf x Lk<

Proposition 1.6. A function f: U fag ¥ R™ has limit L at a if and only if for all sequences Xxp U fag
with xXn, ¥ x we have f x, ¥ L.

Proposition 1.7 (Properties of limits).
Q) Letf: U fag * RMandlet f x flx::::;fF™ x wherefi:U fag ! Rforeachi 1;:::m.
Then limyxsga F X f a ifandonlyif foreveryi 1;:::m we have limysg f' X ! a

(2) Let F;g: U fag ¥ R™ with limxsa f X Land limxiag X J.If ; 2Rthenlimygig F X
g X L J.

Definition 1.8. LetU beopeninR™"and f: U ¥ R™M. Wesay that f iscontinuousata 2 U iflimxsg f X f a
and we say that f is continuous on U if continuous at every a 2 U.

Proposition 1.9. A function f is continuous at a if and only if limyx s g kKF X fak O

Proposition 1.10. A function f: U ¥ R™ is continuous at a if and only if for every sequence with x, ¥ a we
have f x, " f a .

Proposition 1.11 (Properties of continuous functions).

(1) IfU isopenin R™"and f;g: U ¥ R™ are continuousand ; 2 Rthen f g is continuous.
(2) fUisopenin R"and f: U ¥ R™ then f f1;:::;F" is continuous if and only ifeach f': U ¥ Riis
continuous for every i 1;:::;n.

@) Iff:U T RMandg:V ! RKand U isopeninR"and V isopenin RKand f UV then f and g
continuous implies that g T is continuous.

Let X R". Recall that f: X ¥ X is called a contraction if there exists 0 K < 1 such that for all x;y 2 X
we have kf x f y k Kkx yk.

Proposition 1.12 (Contraction mapping theorem). If f: B O;r ¥ B O;r isacontraction then there is a unique
X 2B 0;R suchthat f x X.



Note 1.2. Recall from Real Analysis that the contraction mapping theorem is usually proved for a contraction
on a complete metric space. It reduces to this case as B O;r is a closed subset of the complete metric space
R" and hence complete.

2. Differentiation in R".

Definition 2.1. Let U be open in R™ and f: U ¥ R™. We say that T is di Cerkntiable at a 2 U if there is a
linear map L: R™ ¥ R™ such that
Iirnkfa h fa Lhk
hro khk

Lemma 2.2. If f is di Lerkntiable at a then the L in the definition is unique.

0:

If ¥ is di Cerkntiable at a we denote the linear map L by % a . If F is di [erentiable at every a 2 U we say
that T is di Cerentiable on U.

Proposition 2.3. Let U be open in R™ and f: U & R™. Define fi:U 1 R fori 1;::::m b_y f x
fl x ;::;F™ x for all x 2 U. Then ¥ is di[erkntiable at a 2 U if and only if each of the f' is di [er}
entiable at a and f° a f0a ;. fm0 g

Lemma 2.4. The function f is di Lerkntiable at a if and only if there exists a linear function L,an >0 and a
function R: B 0; I RMsuchthatf a h fa Lh R h andlimphigkR h k=khk 0.

Proposition 2.5. If L: R™ * RM is linear and v 2 R™ then ¥ x L x v is dilerkntiable on all of R" and
f'x L

Proposition 2.6. If f: U ¥ R™ is di Lerkntiable at a then f is continuous at a.

Lemma 2.7. If T is diLerkntiable atathen 8 > 09 > 0such thatif khk < thenkf a h fhk
kf? a k khk.

Proposition 2.8. If f and g are diLerkntiableata 2 R"and ; 2 Rthen f g and fg are di [erkntiable
atawith f g'la ' a g’a and fg’a fag'a gafla.

Proposition 2.9 (Chain Rule). Let f: U ¥ R™ and g: V ¥ RK where U is open in R™ and V is open in R™ with
fU V. Then if f is di Cerkntiable at a and g is di Lerkntiable at ¥ a then g T is di Cerkntiable at a and
g fla g°'fa fla.

Proposition 2.10. If U R"™and f: U ¥ R™ is di Lerkntiable at a and v 2 R" then

fla v d—fa tv

dt t 0:
Corollary 2.11. Let f be as above and write fl::::FM | Let el be the vector with a 1 in the ith place and
zeros elsewhere. Then 1
P of? of™
fla € - a i ——
dxi T dxd
so that the linear map % a : R™ ¥ R™ is the Jacobian matrix
of'
Jf -
@x)

2.1. Functions of class Ck.

Definition 2.12. Let f: U ¥ R for U open in R". We say that f is (of class) CK if all partial derivatives of
T exist and are continuous on U up order k. We write C° for continuous functions and C1 or smooth for
functions which are in CK for every k. The set of all CX functions on U is denoted by CK U or CX U;R .

Let f: U ¥ R for U open in R". We say that f is CKifeach f: U ¥ RisCKwhere ¥  f1;:::;f™ . Again
we write CK U;R™ for the set of all such f.

Proposition 2.13. If f 2 C! U then f is di [erkntiable at u.
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Proposition 2.14. If f 2C2 U then
0*f 0*f
Oxiex]  @xJ@x’
on U. Similarly if ¥ isCX for k 2 then all partial derivatives up to order including k are independent of order.

Proposition 2.15. CK U;R™ is a vector space.

Proposition 2.16 (Chain Rule). Letf: U * R™and g: V ¥ RXwhere U isopen in R™ and V is open in R™ with
f U V. Assume that ¥ and g are C! then

i X i |
g 17 f ! a @—gjl f a @f_
@x! | 1@x @x!

foreveryi 1;:::;nandj 1;:::;k

a

2.2. Mean Value Theorem. For any Xg and X3 in R™ we define Xg;X; to be the line segment joining Xo to
Xy thatisfl txe txpjt2 0;1g.

Proposition 2.17 (Mean Value Theorem). If U isopenin R™ and f: U ¥ R™ is di Lerkntiable and Xg; X1 U
andu2RMthen 9 | 2 Xgo;X1 such that

hf x; ;ui hf %o ;ui hf® |, X1 Xo ;ui:

Corollary 2.18. If U is open in R™ and h: U ¥ R™ is di[erkntiable and kh® k 8 2 Xp;X1 then
kh Xo h X1 k< |(X0 Xlk.

2.3. Inverse Function Theorem.

Theorem 2.19 (Inverse Function Theorem). Let U be openin R" and f: U ¥ R"™ be CKX for k 1. Assume that
0 a is invertible for some a 2 U. Then there is an open setV U with a 2 V and such that:

(1) £ V isopen,

(2)f:Vv ¥ TV isinvertible,

(3) F lisck, and

@ f10Fa fla 1

Corollary 2.20 (Open mapping theorem). Let U be open in R™ and f: U I R" be such that £ x is invertible
forall x 2U. Then f U isopeninR".

Definition 2.21. If U and V are open in R" and f: U 1 V is CK with a CK inverse then f is called a (CK)
di Ceamorphism.

For the implicit function theorem we need the following notation. If x 2 R™ and y 2 R™ then we denote by
X;y the obvious element R" R™,

Theorem 2.22 (Implicit Function Theorem). Let U be open in R™ ™, Xo;yo 2U and F: U ¥ R™ be CK. If
F Xo;¥Yo 0 and o 1

=2 [=23

T XoYo 1T gum X0iYo
BF iy . . §
~ X0, Y0 .
oy — oEm

gyt Xo:Yo il gym X0, Yo

is non-singular then there exists an open set V. R"™ containing Xo and a CX function £: V I R™, such that
F x;F x Oforallx2V.

3. Submanifolds

Definition 3.1. AsubsetS RN is called a submanifold of dimension n if for all s 2 S there exists a U open
in RN, containing s, and asmoothmap :U ¥ R"suchthat U isopen, :U ¥ U isadi[edmorphism
and

S\U fx2Uj " 1x;: Nx 0g:



Theorem 3.2. LetS RN then the following are equivalent.

(1) S is a submanifold of dimension n;

(2) for every s 2 S there is an open set U RN containing s and a smooth function F: U ¥ RN " such that
F x isontoforallx 2S\UandS\U fx2UjF x 0g;

(3) for all s 2 S there exists U open in RN such that S \ U is the graph of a smooth function of n of the N
variables;

(4) for all s 2 S there is a V open in RN containing s and U open in R" anda : U Y V which is one to one
with ° x one to one for all x 2 U and such that S\ V u.

Corollary 3.3. If U isopenin RN and F: U I RN " jssmooth with F® x ontoforallx 2S F 1f0gthensS is
a submanifold of dimension n.

Definition 3.4. Let S RN be an n dimensional submanifold. If U is an opensetin RN and F: U ¥ RN "
is smooth with F' s ontoforalls 2S\UandS\U fs2UjF s Og then F is called a local defining
equation for S.

Definition 3.5. Let S RN be an n dimensional submanifold. If U is an open subset of R and V an open
subset of RN and : U Y V is smooth and one to one with ° x onetooneforallx2U and U S\V
then is called a local parametrisation of S.

3.1. Tangent space to a submanifold.

Definition 3.6. Let s be a point in a submanifold S RN. Let > 0. Then a smooth map ;7 1Is RN
with 0 s isacalled a smooth path in S through s.

Definition 3.7. Define TsS to be the union of all the vectors ° 0 for asmooth path in S through s. Call it
the tangent space to S at s.

Proposition 3.8. TsS is an n-dimensional subspace of RN.

Proposition 3.9. If F is a local defining equation for S defined on an open set containing s then TsS  kerF® s .
If is a local parametrisation for S with X sthen TsS im % x . Moreover L% JlllooR Xoarea

. @xt
basis for TgS.

(=)

3.2. Smooth functions on submanifolds. LetS RN be a submanifold and let : S ¥ R be a function.

Definition 3.10. We say that T is a smooth function if there is an opensetU RN withS U and a smooth
function ¥: U ¥ R such that forany s 2 S we have T s fs.

Proposition 3.11. LetS RN be a submanifold and £: S ¥ R a function.

(1) If :U ¥ Sisa parametrisation and f is smooth then f ;U ¥ Ris smooth.

(2) If for every s 2 S there is a parametrisation :U ¥ Swiths 2 U such that :U T R is smooth
then F is smooth.

Proposition 3.12. Let S RN be a submanifold and :U ¥ S and :V I S be parametrisations with
u V then ' :V I U isadiledmorphism.

Let S be a submanifold and f: S ¥ R a smooth map. Let f:U I R be a smooth extension of f to an open set
U containing S. Then f% s : RN ¥ R and we denote by % s : TsS ¥ R the restrictionof f' s to TsS RN.

Lemma 3.13. £ s : TsS ! R is independent of the choice of extension f.

Definition 3.14. If £: S ¥ R™ and each f': S ! R is smooth where f1l.:::;FM then we say that F is
smooth.

Proposition 3.15. If f: S ¥ R™M is a smooth map from a submanifold S which has its image inside a submanifold
T R™thenforanys2Swehavethatf’s TS  Tes T.

4. Geometry of curves

Definition 4.1. A curve is a one-dimensional submanifold.



If c is a point in a curve C then T.C is one-dimensional so that T.C f0g has two connected components. A
continuous choice of one of these two components at each point of C is called an orientation and a curve with
an orientation is called an oriented curve.

Definition 4.2. A parametrised curve C is a curve for which there is a parametrisation : a;b ¥ C with
a,b C.

For a parametrisation ° t 0. If °t isin the chosen half of T  C for an oriented curve C then we say
the parametrisation is oriented.

Definition 4.3. We say a parametrised curve is parametrised by arc length ifk t k 1 forall t.

Lemma4.4. If t and e t aretwo arc length parametrisations of a curve C then there is a typ 2 R such that
t et ty forallt.

Definition 4.5. Then unit normal vector field T on a parametrised curve C is defined by T Ot=k "tk

Lemma 4.6. If t is parametrised by arc lengththenh @ t; °ti O.

Definition 4.7. If C is a curve with an arc length parametrisation t then the curvature of C at c t is
c k %tk
Proposition 4.8. If Cisacurve and t is a (not necessarily arc-length) parametrisation then
1 00 oh % %i
k 0k2 k 0k2
1
.o - 1=2
1 K 00k2 h 0; 00.2
k k2 k 0k2

4.1. Curves in R3.

Definition 4.9. Let C RS be a curve. Define N  T%=kT the principal normalto andB T N the unit
binormal.

Proposition 4.10 (Frenet formula). Let T, N and B denote di Lerkntiation with respect to arc-length. Then we
have

T N N T B B N
for a function on the curve called the torsion of the curve.

5. Geometry of surfaces

Let R3 be a surface. Then Ts 7, the orthogonal space to the tangent space Ts , is one-dimensional so
if zero is removed there are two connected halves. In other words there are two possible unit normals. An
orientation for is achoice of unitnormaln s 2 Ts 7 continuously across the surface. An oriented surface
is a surface with an orientation. If :U ¥ s a parametrisation we say it is oriented if

@71 Lz

@x @x .

A Y T
ext  @x?

The unit normal definesamap n: ¥ S2 called the Gauss map.

Proposition5.1. Lets 2 andletv 2 T . Lettheunitnormalats ben. Then9 > 0andamap
suchthat 0 s, °0 wvand t atv bt nforsome functions a and b.

Proposition 5.2. The curvature of the curve in Prop. 5.1 is given by hn; © 0 i=k % 0 k2.

If U ¥ arelocal parameters for a surface with X s and v and w are in Ts define the second
fundamental form by -
+

X 02

S VW Viwj ———— X
o axigxd

P P M

where v ,2 1vi% and w ,2 1Wig?.



Proposition 5.3. Let be the second fundamental form at a point s of a surface then:
1) wv;w hdn v ;w i hdn w ;vi,

(2) is independent of the parametrisation,

B)ifkvk 1 and ischosen asinProp. 5.1 then v;v isthe curvature of ats.

Definition 5.4. The first fundamental form ats 2 is the inner productg v;w hv;wi.

Definition 5.5. Define a function s :Ts ¥ Ts by dn s n’s .

Clearly v;w h v ;w i. issymmetric so it has orthogonal eigenvectors v; and v, with eigenvalues 1

and . The directions v; are the directions of greatest and least curvature. The eigenvalues ;, » are called

the principal curvatures. Their average 1=2 tr is called the mean curvature and their product det is

called the Gaussian curvature.

Proposition 5.6. If v; and v, are a basis for Ts and jj Vi;Vvj and gij g Vi, Vj hvi;vji then
g ! so that det det j =det gij .

6. Integration

6.1. Integration in R™. Let R be a closed bounded subset of RZ and f: R ! R a continuous function. Define
a partition P to be a gollection of rectangles Rj, i  1;:::;n which intersect at most on their edges and which
cover R, thatis R ,” 1 Ri. Denote the area of each R by 4A;. Define a selection for P to be a collection of
points x; 2 Rj \ R for each i. For each partition and selection consider the sum

f X; 4A;:
il
Let mesh P minf4A;g.
Theorem 6.1. There eX|st's_)a number L such that for every > Othereisa > 0suchthatifmesh P < and

X; is any selection then i 1f X; 4A; L <

R
The number L is denoted  f X dA and called the integral of T over R.

Prgposition 6.2. The integral satisfies:

(i) g FdA s linear in T, R R

(i) iff x;y g x;y forall x;y 2Rthen g X;y dA rg X;y dAwithequalityifandonly f x;y

g x;y forall x;y 2F§,

iii) if ¥ x5y 0 then T x;y dA is the volume in R® of the region consisting of all x;y;z such that
xX;¥y 2Rand0 z f x;y and R R R

(iv) if Ry and R, are two regions with R1 \ R ; and R Ri1 [ Rz then Ry fdA R» fdA r TdA.

Theorem 6.3 (Fubini). Let FZQ b% a closed bounded rﬁgion in R% ar%d f: R ¥ R a continuous function. Then

f X;y dx dy fdA f x;y dy dx:
R

All these results generalise to R".

Definition 6.4. Let U be an open subset of R™" and ¥: U ¥ R be continuous and define the support of f
(supp F ) to be theclosureinU of fx 2 U: f X Og.

Theorem 6.5 (Change of variable formula). Let U and V be open subsets of R" and let :U ¥ V be a di [ed
morphism. Let f:V I R hav%support which is cZIosed and bounded in R" then
fdxt::dx" f  jdetJ jaxt::idx"
u

where et ... @11

v
o
o - @x”
; g §:

n

@xn



is the Jacobian matrix of

6.2. Volume forms and integration. Let V be a vector space of dimension n. An n-form is a multilinear and
totally antisymmetric map

1V ) V IR
n times
Multilinear means linear in each of the n factors separately, that is for any wj;v1;:::;vh 2V and a;b 2 R we
have
T vyiin;avi bwiiinivp al vyl Vil Vn b¥ vi;iiwiiiiivn
Totally antisymmetric means that if is a permutation of the numbers 1;:::; n with signl denoted by sign
then
T v 1,5V n sign b vy, Vn .
Notice that if ¥ is an n-form then
1 Vi, it Vi it Vg, il Vn 1 AV4 I V4 N Y N T
and hence
LI VRS VARSAEA VARSI A 0
If vi;:::;Vvn is a basis of V we define an n-form vy;:::;vh by
V1,1 Vn Wil wh o det Xjj
P
where wi E‘Xijvj foreachi 1;:::;n.

We denote the set of all n-forms by det V . It is a vector space and we have

Proposition 6.6. The space of all n-forms, det V , is one dimensional. If ¥ is an n-form and vy;:::;vnisa
basis then 1 ¥ vi;:i:Vn V1,::1Vn .
Corollary 6.7. Let wi;:::;wp and v1;:::; Vv be bases of V. Let w; T 1 XijVj, then

V1;:11Vn det Xijj Wi wp ¢
If RN is an n dimensional submanifold then each tangent space Ts is n dimensional and we can form
det Ts the space of all n-forms on T; . As det T is one dimensional it follows that det Tg fOg
has two connected components. We call oriented if we have picked one of these two components at each s
on inacontinuous manner. If ¥ isin the chosen half of det T TOg then we call it positive. If U 1
is a parametrisation then we say it is oriented if the n form &; i @@Tn is positive.

An n form ¥ on an n dimensional submanifold is a smooth choice of an ¥ s 2 det Tg for every s 2
To say what smooth means we choose a parametrisation :U ¥ | Thenif X s we have

s Ll — X ;i X
ox?t @xn
where from Prop. 6.6 we have that
L} S | @7 1 S @7 1
ox?t @xn
We call ¥ smooth if whenever we choose a parametrisation like this the function ¥ : U ! R is smooth.
Proposition 6.8. If :V I and :U Y are parametrisationsand V U then
' detJ 1 1o
If and are both oriented parametrisations then det J 1 > 0.

Note 6.1. This proposition shows that if ¥ is smooth then so also is ¥

Definition 6.9. If ¥ is a smooth n-form on a submanifold we define its support to be the closure of the set
of points at which it is not zero.

Lif ~ is the matrix whose i;j thentryislif i j and zero otherwise then sign det ~ .



Definition 6.10. If :U ¥ s an oriented parametrisation and ¥ a smooth n form with supportin U
we define 7

[ | ' dxt:iidx™:
U

Proposition 6.11. If :V ¥ is another oriented parametrisation then| ¥ (I |

Note 6.2. To be sure that the integral exists we should really require that the support of ¥ be compact, ie
closed and bounded in RN,

Definition 6.12. LetfU g 2 be an open cover of . A partition of unity sybordinate to this cover is a collection
of smooth functions : 1 0;1 R such that supp U and 1.

Note 6.3. To make sure the sum in the integral makes sense we should impose a condition called local finite-
ness. For this purposes of this course the sums can be assumed to be finite so we will ignore this point.

If ¥ is an n form with support in the image of some (oriented) parametrisation :U ¥ then we define
z

LI A
If ¥ isa rgore general form we assume that it is possible to find a collection of parametrisations U |
with U and a partition of unity subordinate to U g and we define
z = Z
Ll LI
M

Note 6.4. (1) The support of T isin u .
(2) The existence of the partition of unity required is guaranteed in much generality which we will not go into
in this course. We shall assume it exists.

Proposition 6.13. The integral of an n form just defined is independent of the choice of parametrisations and
partition of unity.

6.3. Volume forms.

Lemma 6.14. If V is a vector space with an inner product h ; i and ey;:::;en and fy;:::; f, are orthonormal
bases then ej;:::;en LN I

Definition 6.15. If RN is an oriented submanifold and e;;:::;en is an orthonormal basis of Ts and
e1;:::;en Iis positive we define vol s e1;:::;en , the volume form of

Note 6.5. (1) Orthonormal means orthonormal with respect to the inner product on RN restricted to T
(2) The Lemma guarantees that the volume is independent of the choice or orthonormal basis.
(3) When its obvious from context we will drop the from vol and just write vol.

Proposition 6.16. Let :U Y be a parametrisation of . Let gjj hg?; gﬁi then

vol det gij

Note 6.6. It follows that vol is a smooth n form.

Lemma 6.17. If VRS2 is a two dimensional subspace and I is any two form on V then thereisann 2 V?
(not necessarily unit length) such that for any v and w in V we have ¥ v;w hv  w;ni.

Note 6.7. This lemma shows that orienting a surface by chosing a normal is the same as orienting a surface
by choosing one half of det T

Proposition 6.18. If R3 is an oriented surface and n is the unit normal to  ats which defines the orientation
then

vol v;w hv  w;ni

for any v and w in Tg
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6.4. One forms. Let be a submanifold and f: ¥ R a smooth function. Then for any s 2 we have that

df s s : Ts ¥ Risalinear map. In particular if 1U I isaparametrisation and b 1 then each
of the components of b bl;:::; b" isafunction b': U ¥ Randhencedb!s :Ts I Ris a linear
map foranys 2 U . We have
Proposition 6.19. The linear mapsd b s ;:::;db" s area 2asis of the dual space Ts  satisfying
: 0] : 1 ifi j
dbls — x : o
@xJ J o ifi j
if X S.
Definition 6.20. A gse form is_a choice of linear map s : Ts T R for every s. Any one form can be
expanded as s 1, isdbls andwesay issmoothifeachofthe j: U ¥ Rissmooth.
Proposition 6.21. If :U ¥ and :V ¥ are parametrisationsand U V then
. Xep 1 i .
db' s e s dbls
i 0%
. P, . _ P, _ -
sothatif s i1 isdb's and 7s i 1 isdb's then
X 1 i
i S s @7| s
it 0x

Definition 6.22. If V is a two dimensional vector space and and are one forms we define  , their
wedge product, by
N VW \Y/ w w AVA

forany v and w in V.

Lemma 6.23. If :U ¥ isa parametrisation of a surface then

e o

Ox1’ @x?2

Proposition 6.24. (1) If :U @ s a parametrisation of a surface and is a one form then the two form
d defined by

dbl~db?

X .
d s dis ~db's
i1
P2 ik Bl ik dbls ~dbls:

is independent of the parametrisation.
(2) If T isa functionon thend T daf »~ fd .

Definition 6.25. A closed surface is a two dimensional submanifold of R3 which is closed and bounded. It
follows that it has no boundary.

R
Proposition 6.26 (Weak Green’s Theorem). If is a one form on an oriented closed surface then d 0.

7. Gauss-Bonnet Theorem

Definition 7.1 (Pulling back two forms). If f: 1 ¥ 5 is a smooth map between two submanifolds of dimen-
sionnand ¥ isan n formon , we definean n formon ; called ¥ ¥ | the pull-back of ¥, as follows. If

viiiisvpareinTs thenfls vy ;:::;F's v, arein Tgs 2 and so we define
f Y s wvq;:iiVn " fs f's vy i FU s v
. . . |::.n i@ Pn i@ 0 P” ief
If :U T ,isalocal parametrisation and v i 1V g andw i 1W'gathenfls v i 1V e
0 n jor
and f’ s w i 1W! 5 and hence
- f f
f I viw viwlt £ s 0 - ;@ -
@x! @xJ

ijj 1
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Proposition 7.2. If R3 is a surface with Gaussian curvature R and n: ¥ S? s the unit normal then
Rvol n vol?:

Note 7.1. We choose orientations here so that vol v;w hv  w;ni and similarly for S? with n there being
the outward normal.

Proposition 7.3. Let ¢ be a family of closed oriented surfaces in R® depending smoothly on a parameter t.
Define X h?j—rt‘ dn X ;ni then

d
—R | d :
dg tvor

gorollary 7.4. Let ¢ be a family of closed oriented surfaces in R3 depending smoothly on a parameter t. Then
. Rt vol is independent of t.

Proposition 7.5. For a sphere we have b4

1
— Rvol 2:
2 52

Definition 7.6. We say a surface °is obtained from a surface by adding a handle if we remove two disks
from and attach to the two resulting circles in each end of a cylinder.

Proposition 7.7. If the oriented closed surface  is obtained from the oriented closed surface by adding a
handle then Z Z

1 1
— Rvol — Rvol 2
2 0 2
Corollary 7.8. If is obtained from a sphere byzadding g handles then
1
— Rvol 2 2g:
> g

Theorem 7.9. If is aclosed surface in R® then is homeomorphic to a sphere with g handles.

Note 7.2. The quantityg g is called the genus of and can be calculated from
1 1
— 2 — Rvol
9 2 2
7.1. Tessellations.

Definition 7.10. Let be a surface in R3. A tessellation T for is:
(1) a set of points v1;:::;vn in called vertices,

(3) a collection of subsets f1;:::;f of called faces such that (i) the boundary of every face is a union of
edges and each face is homeomorphic to a polygon in R2.

A tessellation where every face has three edges is called a triangulation.

Definition 7.11. Let T be a tessellation of a surface and let v be the number of vertices, e the number of
edges and T the number of faces. Define

T v e F:
Proposition 7.12. Let be a surface and T and T tessellations. Then T TO .
Definition 7.13. If isasurface we define its Euler characteristic to be ; T for some some tessellation.

Proposition 7.14. If is a surface of genus g, ie it is obtained from a sphere by adding g handles then
2 2g.

Note 7.3. This gives an alternative way of calculating g namely g 1=2 2

Theorem 7.15 (Gauss-Bonnet). If isa cIoned oriented surface then

1
—  Rvol 2 2
> g



