Geometry of Surfaces 2011

Mid-semester examination — Solutions

1.

- (a) F. f(x) = |x| is the standard example of a function which is continuous at 0 but not differentiable at 0.
- (b) T. *f* is differentiable at *a* so -f is differentiable at *a* so g = (f + g) + (-f) is differentiable at *a* using standard results from lectures.
- (c) T. Follows from the chain rule.
- (d) T. If f is C^1 on \mathbb{R}^3 then it is differentiable on all of \mathbb{R}^3 from a result in lectures. Hence it is differentiable at (1,2,3).
- (e) F. The inverse $f^{-1}(x) = x^{1/3}$ is not infinitely differentiable. It is not differentiable once at 0.

[2 + 2 + 2 + 2 + 2 = 10]

2.

(a) Let *U* be open in \mathbb{R}^n and $f: U \to \mathbb{R}^m$. We say that *f* is differentiable at $a \in U$ if there is a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - L(h)\|}{\|h\|} = 0.$$

(b) Let $h = (\alpha, \beta)$ then f(a) = (1, 1, 1) and $f(a + h) = f(1 + \alpha, 1 + \beta) = (1 + \alpha, 1 + \alpha + \beta + \alpha\beta, 1 + 2\beta + \beta^2)$. Let $L(h) = (\alpha, \alpha + \beta, 2\beta)$ which is linear. Then

$$\|f(a+h) - f(a) - L(h)\| = \|(0, \alpha\beta, \beta^2)\| \le \sqrt{\alpha^2 + \beta^2 + \beta^4} \le \sqrt{(\alpha^2 + \beta^2)^2} \le \|h\|^2.$$

This

$$0 \le \frac{\|f(a+h) - f(a) - L(h)\|}{\|h\|} \le \|h\| \to 0$$

as $h \rightarrow 0$. Hence by the Squeeze Lemma

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - L(h)\|}{\|h\|} = 0.$$

and *f* is differentiable at (1, 1). We have $f'(1, 1)(h) = (\alpha, \alpha + \beta, 2\beta)$.

[4 + 6 = 10]

3.

(a) A subset $S \subseteq \mathbb{R}^N$ is called a *submanifold* of dimension n if for all $s \in S$ there exists a U open in \mathbb{R}^N , containing s, and a smooth map $\phi: U \to \mathbb{R}^n$ such that $\phi(U)$ is open, $\phi: U \to \phi(U)$ is a diffeomorphism and

$$S \cap U = \{x \in U \mid (\phi^{n+1}(x), \dots, \phi^N(x)) = 0\}.$$

- (b) Consider $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$. Then $S^2 = F^{-1}(0)$ where $F(x, y, z) = x^2 + y^2 + z^2 1$. The function $F \colon \mathbb{R}^3 \to \mathbb{R}$ is a polynomial so smooth, and is a defining equation for S^2 because $F'(x, y, z) = (2x, 2y, 2z) \neq 0$ for every $(x, y, z) \in S^2$ and hence, from results in lectures, S^2 is a submanifold of dimension two and thus a surface.
- (c) Define $f: S^2 \to \mathbb{R}$ by f(x, y, z) = z. This is the restriction of $\tilde{f}: \mathbb{R}^3 \to \mathbb{R}$ $\tilde{f}(x, y, z) = z$ which is clearly smooth so that f is smooth.

[3 + 4 + 3 = 10]