Algorithm for computing T, N, B, κ and τ.

Let $\gamma:(a, b) \rightarrow C$ be a parametrised curve in \mathbb{R}^{3}. To compute T, N, B, κ and τ we proceed as follows.
First notice that if $X: C \rightarrow \mathbb{R}^{3}$ is any of T, N or B or even a general function the relation between differentiating with respect to arc-length and differentiating with respect to the γ parametrisation is given by

$$
\dot{X}=\frac{X^{\prime}}{\left\|\gamma^{\prime}\right\|}
$$

1. Calculate $\gamma^{\prime}(t)$ and $\left\|\gamma^{\prime}(t)\right\|$. Then

$$
T=\dot{\gamma}=\frac{\gamma^{\prime}}{\left\|\gamma^{\prime}\right\|}
$$

2. Calculate T^{\prime} and $\left\|T^{\prime}\right\|$ then

$$
N=\frac{T^{\prime}}{\left\|T^{\prime}\right\|}
$$

3. Using the result above

$$
\dot{T}=\frac{T^{\prime}}{\left\|\gamma^{\prime}\right\|}
$$

4. Deduce κ from

$$
\dot{T}=\kappa N .
$$

5. Calculate B from

$$
B=T \times N .
$$

6. Compute B^{\prime} and

$$
\dot{B}=\frac{B^{\prime}}{\left\|\gamma^{\prime}\right\|}
$$

7. Deduce τ from

$$
\dot{B}=-\tau N
$$

All the answers above will be functions of t and represent T, N, B, κ and τ evaluated at $\gamma(t)$.
Notice that you could use the formula in the notes to compute κ but the method above is probably easier if you have to compute T, N, B and τ as well. It is also apparent from the above that

$$
\kappa=\frac{\left\|T^{\prime}\right\|}{\left\|\gamma^{\prime}\right\|}
$$

This looks like it is an easy way to get κ but in fact it requires you to calculate

$$
\kappa=\frac{\left\|\left(\frac{\gamma^{\prime}}{\left\|\gamma^{\prime}\right\|}\right)^{\prime}\right\|}{\left\|\gamma^{\prime}\right\|}
$$

which comes out the same as the formula we derived in class.

