Algorithm for computing *T*, *N*, *B*, κ and τ .

Let $\gamma: (a, b) \to C$ be a parametrised curve in \mathbb{R}^3 . To compute *T*, *N*, *B*, κ and τ we proceed as follows.

First notice that if $X: C \to \mathbb{R}^3$ is any of *T*, *N* or *B* or even a general function the relation between differentiating with respect to arc-length and differentiating with respect to the γ parametrisation is given by

$$\dot{X} = \frac{X'}{\|\gamma'\|}.$$

1. Calculate $\gamma'(t)$ and $\|\gamma'(t)\|$. Then

$$T = \dot{\gamma} = \frac{\gamma'}{\|\gamma'\|}$$
$$N = \frac{T'}{\|T'\|}$$

 $\dot{T} = \frac{T'}{\|\gamma'\|}.$

 $\dot{T} = \kappa N.$

 $B = T \times N.$

- 2. Calculate T' and ||T'|| then
- 3. Using the result above
- 4. Deduce κ from
- 5. Calculate *B* from
- 6. Compute B' and
- 7. Deduce τ from

$$\dot{B} = -\tau N$$
.

 $\dot{B} = \frac{B'}{\|\gamma'\|}.$

All the answers above will be functions of t and represent T, N, B, κ and τ evaluated at $\gamma(t)$.

Notice that you could use the formula in the notes to compute κ but the method above is probably easier if you have to compute *T*, *N*, *B* and τ as well. It is also apparent from the above that

$$\kappa = \frac{\|T'\|}{\|\gamma'\|}$$

This looks like it is an easy way to get κ but in fact it requires you to calculate

$$\kappa = \frac{\left\| \left(\frac{\mathcal{Y}'}{\|\mathcal{Y}'\|} \right)' \right\|}{\|\mathcal{Y}'\|}$$

which comes out the same as the formula we derived in class.