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We have the usual notation R for the real numbers, R" for n-tuples of real numbersand N  f1; %1'3

the natural m.g‘nbers. Recall that if x  x%;:::;x" andy L.:ii;y™ are in R™ then kxk
and hx;yi &1 x'y!. These satisfy

hx;yi  kxkkyk Cauchy’s inequality;
kx yk kxk kyk Triangle inequality
and
maxfjxtj; i jx"jg  kxk pﬁmaxfjxlj;:::;jx”jg:
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Note 1.1. Those who have done Real Analysis or Topology and Analysis will recall that R™ with the Euclidean
metric d X;y kx yk is a metric space. We don’t need the metric notion for this course but we will
use many of the other notions of metric spaces such as open balls, open sets, sequences, limits and contin-
uous functions but usually only for the metric space R". We will only need sequences briefly to prove the
Contraction Mapping Theorem.

The open ball around x 2 R" of radius > 0is B Xx; fy 2R"jkx yk< gandasubsetU R"is
called open if for every x 2 U there is some > 0 such that B x; u.
A sequence in R"is a function N f1;2;:::g ¥ R" usually denoted by its set of values X1;Xo;::: or Xn rl, 0

or often just xp . Asequence Xpn has limit x 2 R" if for all > 0 there is an N such that foralln N we

have kx, Xk < . Insuch a case we also say that x converges to X and write limps1 X5 X Or just X, ¥ x.
[2011: End of Lecture 1]

Lemma 1.1. If X, has a limit it is unique.

Lemma 1.2. Asequence Xp has limit x 2 R" if and only if limhs1 kx, Xk O.

Lemma 1.3 (Squeeze Lemma). Let X, , Yn and z, be sequences of real numbers with X, yn zp for
alln. If xn, ¥ xand z, ¥ xXthenyp ¥ X.

Proposition 1.4 (Properties of limits of sequences).
(1) fxm  Xk:::5xR 2R"thenlimmri Xm X  x%::x™ ifand only if limme 1 i, x! for all

(2 fxXn * xXandyn " yand ; 2Rthen Xp yn? X V.

Lemma 1.5. If xn ¥ X then limm:nr1 kXn Xmk T 0.

A sequence with limmn1 KXn  Xmk T 0 is called Cauchy.

Theorem 1.6. Every Cauchy sequence in R" converges.

[2011: End of Lecture 2]

Definition 1.7. Leta2U R", Uopenand f:U fag ! R™. We say that f haslimitLataif8 >09 >0
such thatif kx ak< andx2U thenkf x Lk<

If ¥ has a limit L at a it is unique and we write limy o f X L.

Proposition 1.8. A function f: U fag ¥ R™ has limit L at a if and only if for all sequences Xxp U fag
with x, ¥ awe have f x, T L.

Lemma 1.9 (Squeeze Lemma). Let F;g;h: U fag ¥ R be functions with ¥ x g X h x forall x 2
U fag. Iflimgigf X L limxsigh x thenlimyigg X L.

Proposition 1.10 (Properties of limits).
Q) LetF: U fag ¥ RMandlet f x flx;:::;fF™ x wherefi:U fag ! R foreachi 1;:::m.
Then limyxiga F X f a ifandonlyifforeveryi 1;:::m we have limysg ' X f'a.

(2) Let F;g: U fag ! R™ with limxsa T X Land limxiag X J.If ; 2Rthenlimyxig T X
g X L J.

Definition 1.11. Let U be open in R" and f: U ¥ R™. We say that f is continuousata 2 U if limxiaf X
Tt a and we say that T is continuous on U if T is continuous at every a 2 U.

Proposition 1.12. A function T is continuous at a if and only if limyx g kF X fak O
Proposition 1.13. A function £: U ¥ R™ is continuous at a if and only if for every sequence with x, ¥ a we
have f x, " f a.

[2011: End of Lecture 3]



Proposition 1.14 (Properties of continuous functions).

(1) IfU isopenin R" and f;g:

(2) IfU isopeninR™"and f: U
continuous for every i 1;:::;m.

B)Iff:U ¥ RMandg:V T RXand U is open in R™ and V is open in R™ and f U V then ¥ and g
continuous implies that g F is continuous.

R™ are continuousand ; 2 Rthen F g is continuous.

m C

Let X R". Recall that f: X ¥ X is called a contraction if there exists 0 K < 1 such that for all x;y 2 X
we have kF x f y k Kkx vyk.

Proposition 1.15 (Contraction mapping theorem). If f: B O;r ¥ B O;r isacontraction then thereis a unique
X 2B O;R suchthatf x  Xx.

Note 1.2. Those of you who have done Real Analysis will know that the Contraction Mapping Theorem is
usually proved for a contraction on a complete metric space. That more general result reduces to this case
as B 0;r is aclosed subset of the complete metric space R" and hence complete.

2. Differentiation in R".

Definition 2.1. Let U be open in R™ and f: U ¥ R™. We say that T is di Lerkntiable at a 2 U if there is a
linear map L: R™ ¥ R™ such that

Iimkfa h fa Lhk
hro khk

Lemma 2.2. If f is di Lerkntiable at a then the L in the definition is unique.

0:

If ¥ is di Cerkntiable at a we denote the linear map L by % a . If T is di Lerkntiable at every a 2 U we say
that f is di Cerkntiable on U.
[2011: End of Lecture 4]

Proposition 2.3. Let U be open in R™" and f: U I R™. Define f':U ¥ R for i 1:iom by £ x
flx ;::;FM™ x for all x 2 U. Then F is di[erkntiable at a 2 U if and only if each of the f' is di [er}
entiable at a and ° a fla:fa

Lemma 2.4. The function f is di Lerkntiable at a if and only if there exists a linear function L,an >0 and a
function R: B 0; I RMsuchthatf a h fa Lh R h andlimpigkR h k=khk 0.

Proposition 2.5. If L: R" ¥ RM is linear and v 2 R™ then f x L x v isdilerkntiable on all of R" and
f'x L

Proposition 2.6. If f: U ¥ R™ is di Lerkntiable at a then T is continuous at a.

Lemma 2.7. If T is dilerkntiable atathen 8 > 09 > 0such thatif khk < thenkf a h fhk
kf? a k khk.

Proposition 2.8. If f;g: U ® R™ are dilerkntiableata2 R"and ; 2 Rthen f g is di [erkntiable at
aand f g'a i a g’ a.
[2011: End of Lecture 5]

Proposition 2.9. If f;g: U 1 R are di[erkntiable at a 2 R" then fg is di [erkntiable at a and fg ? a
fagla gafla.

Proposition 2.10 (Chain Rule). Let¥: U ® R™and g: V T RXwhere U isopenin R™ and V is open in R™ with
fU V. Then if T is di Cerkntiable at a and g is di [erkntiable at ¥ a then g T is di Cerkntiable at a and
g fla g°'fa fla.

[2011: End of Lecture 6]
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Proposition 2.11. IfU R"isopenand f: U ¥ R™ is di Cerkntiable at a and v 2 R" then

d
fa v —Ff a tv

dt to
Corollary 2.12. Let f be as above and write fl;:::;F™ . Let el be the vector with a 1 in the ith place and
zeros elsewhere. Then 1
. of! ofm
f'a e - a i
dx! @x!
so that the linear map % a : R™ I R™ is the Jacobian matrix
fi
Jf a 0 -
0xJ

2.1. Functions of class CK.

Definition 2.13. Let f: U ¥ R for U open in R". We say that F is (of class) CK if all partial derivatives of
exist and are continuous on U up to and including order k. We write C° for continuous functions and C* or
smooth for functions which are in CK for every k. The set of all CK functions on U is denoted by CX U or
CKU;R .

letf:U ¥ R™ forU openinR™and let ¥  f1;:::;f™ . We say that f is CK if each f': U ¥ R is CX for
i 1;:::;m. Again we write CK U;R™ for the set of all such F.

Lemma 2.14. Let a < b < ¢ and assume that f: a;c ¥ R is continuous and % a;b [ b;c ¥ Riis
continuous and

lim % x lim % x
t'b t'b

thenfisClon a;c andf’b
[2011: End of Lecture 7]

Proposition 2.15. If f 2 C1 U then f is di [erkntiable at a for alla 2 U.

Proposition 2.16. If f 2 C2 U then
@*f @*f
Oxigxt  @xJ@x!
on U. Similarly if ¥ isCX for k 2 then all partial derivatives up to order including k are independent of order.

Proposition 2.17. CX U;R™ is a vector space.

Proposition 2.18 (Chain Rule). Let¥: U ¥ R™and g: VvV ¥ RKwhere U is open in R™ and V is open in R™ with
fuU V. Assume that ¥ and g are C! then

. —_— |
Bo r), Xag oer
@xF ;4 0! @xi

foreveryi 1;:::;nandj 1;:::;k

a .

[2011: End of Lecture 8]

2.2. Mean Value Theorem. For any X and X3 in R" we define Xg;X; to be the line segment joining Xg to
X1 that is Xg; X1 fl txo tx3jt2 0;19¢.

Proposition 2.19 (Mean Value Theorem). If U isopenin R™ and f: U ¥ R™ is di Lerkntiable and Xg; X1 U
andu2RMthen 9 | 2 Xgo;X1 such that

hf x; ;ui hf %o ;ui hf® |, X1 Xo ;ui:

Corollary 2.20. If U is open in R" and h: U ¥ R™ is diLerkntiable and kh® k 8 2 Xxp;%X1 then
kh Xo h X1 k< kXo Xlk.



2.3. Inverse Function Theorem.

Theorem 2.21 (Inverse Function Theorem). Let U be openin R"and f: U ¥ R™ be CX fork 1. Assume that
0 a is invertible for some a 2 U. Then there is an open set V. U with a 2 V such that:

(1) £ V isopen,

(2 fF:V I £V isinvertible,

(3)f lisck and

4 £1°Fa fla 1

[2011: End of Lecture 9]

[2011: End of Lecture 10]

Corollary 2.22 (Open mapping theorem). Let U be open in R™ and : U ¥ R" be such that f° x is invertible
forall x 2 U. Then f U isopeninR".

Definition 2.23. If U and V are open in R™ and f: U 1 V is CK with a CK inverse then f is called a CX
di Cedmorphism.

For the implicit function theorem we need the following notation. If x 2 R™ and y 2 R™ then we denote by
X;y the obvious element R" R™,

Theorem 2.24 (Implicit Function Theorem). Let U be open in R™ ™M, Xg;yo 2U and F: U ¥ R™ be CK. If

F Xo; Yo 0 and
Oﬁ XoiYo il gr? X0: Yo 1
1 1 m ]
oF iy E@y . . ey . §
~ 0, YO .
oy oEm oFm
gy? Xo:Yo il gym Xo0;Yo

is non-singular then there exists an open set ¥ R™ ™ containing Xo;Yo and a CK function f: VvV 1 R™,
whereV X 2R"j x;0 2 ¥gsuch that

¥\fx;y jF X;y Og fx;fx jx2Vg
3. Submanifolds

Definition 3.1. AsubsetS RN is called a submanifold of dimension n if for all s 2 S there exists a U open
in RN, containing s, and asmoothmap :U ! RNsuchthat U isopen, :U I U isadiledmorphism
and

S\U fx2Uj "1x;::: Nx 0g:

[2011: End of Lecture 11]

Theorem 3.2. LetS RN then the following are equivalent.

(1) S is a submanifold of dimension n;

(2) for every s 2 S there is an open set U RN containing s and a smooth function F: U ¥ RN " such that
F' x isontoforallx 2S\UandS\U fx2UjF x O0g;

(3) for all s 2 S there exists V open in RN such that S \ V is the graph of a smooth function of n of the N
variables;

(4) for all s 2 S there is a V open in RN containing s and U open in R™ and an £: U ¥ V which is one to one
with ¥ x onetoone forall x 2 U and suchthat S\V f U .

[2011: End of Lecture 12]

Corollary 3.3. If U isopenin RN and F: U ¥ RN " issmooth with F® x ontoforall x2S F f0OgthenS is
a submanifold of dimension n.

Definition 3.4. Let S RN be an n dimensional submanifold. If U is an open setin RN and F: U 1 RN P
is smooth with F' s ontoforalls 2S\XUandS\U fs2UjF s Og then F is called a local defining
equation for S.



Definition 3.5. Let S RN be an n dimensional submanifold. If U is an open subset of R™ and V an open
subset of RN and :U ¥ V is smooth and one to one with % x onetooneforallx2U and U S\V
then is called a local parametrisation of S.

3.1. Tangent space to a submanifold.
Definition 3.6. Let s be a point in a submanifold S RN. Let > 0. Then a smooth map : ; 1s RN
with 0 s isacalled a smooth path in S through s.

[2011: End of Lecture 13]

Definition 3.7. Define TsS to be the union of all the vectors ° 0 for asmooth path in S through s. Call it
the tangent space to S at s.

Proposition 3.8. TsS is an n-dimensional subspace of RN,

Proposition 3.9. If F is a local defining equation for S defined on an open set containing s then TsS  kerF® s .

If is a local parametrisation for S with X sthenTsS im % x . Moreover @@7 X ;:::'@— X are a

basis for TsS.

[2011: End of Lecture 14]

3.2. Smooth functions on submanifolds. LetS RN be a submanifold and let f: S ¥ R be a function.

Definition 3.10. We say that F is a smooth function if for all s 2 S there is an open set U RN withs 2 U
and a smooth function f: U I R such that fijsxy Fs\u-

Proposition 3.11. LetS RN be a submanifold and ¥: S I R a function.

(1) If :U ¥ Sisaparametrisation and f is smooth then ¥ :U T R is smooth.

(2) If for every s 2 S there is a parametrisation :U ¥ Swiths 2 U such that :U T R is smooth
then F is smooth.

[2011: End of Lecture 15]

Proposition 3.12. Let S RN be a submanifold and U ¥ S and :V ¥ S be parametrisations with
u V then ' :V I U isa di&@morphism.

[2011: End of Lecture 16]

Let S be a submanifold and £: S ¥ R be a smooth function.

Proposition 3.13. LetU RN beopenandg: U I RN be a smooth function with image g U inside a smooth
submanifold S RN.Iff:S ¥ R™ is smooth then f g:U ¥ R™ is smooth.

Proposition 3.14. LetS RN be asmooth submanifoldand : S ¥ R™ be asmooth function. If 1; »: .
S be two smooth paths through s 2 S with { 0 $ 0 then

T 100 T 2OOI

If £:S ¥ R™ is smooth and v 2 TsS we define f s v 2 R™ by choosing a smooth path through s with
0 wvandlettingf’s v f 0.

Proposition 3.15. The function ¥% s : TsS ¥ R™ is well-defined and linear. Moreover if f is an extension of £
thenf’s  f's jrs.

Proposition 3.16. Let S RN be a submanifold and £: S ¥ R™ be smooth. If g: U T RN is smooth with

gu S then

f g'x f'gx g’x:



4. Geometry of curves
Definition 4.1. A curve is a one-dimensional submanifold.

If c is a point in a curve C then T.C is one-dimensional so that T.C f0g has two connected components. A
continuous choice of one of these two components at each point of C is called an orientation and a curve with
an orientation is called an oriented curve.

Definition 4.2. A parametrised curve C is a curve for which there is a parametrisation : a;b ¥ C with
a;b C.

For a parametrisation ° t 0. If %t isin the chosen half of T { C for an oriented curve C then we say

the parametrisation is oriented.

Definition 4.3. We say a parametrised curve is parametrised by arc length ifk ° t k 1 for all t.

[2011: End of Lecture 17]
Proposition 4.4. If : a;b ¥ C is a parametrised curve then it has a parametrisation by arc-length.

Lemma4.5. If t and e t aretwo arc length parametrisations of a curve C then there is a tg 2 R such that
t et tg forallt.

Lemma 4.6. If t is parametrised by arc lengththenh ® t; °ti O.

Definition 4.7. If C is a curve with an arc length parametrisation t then the curvature of C at c t is
c k Ptk

[2011: End of Lecture 18]

Proposition 4.8. If Cisacurve and t is a (not necessarily arc-length) parametrisation then

1 0 Oh 0; OOi
k 0k2 k 0k2
1
.o - 1=2
1 « 00k2 h 0; 00.2
k k2 k 0k2
4.1. Curves in R3,
Definition 4.9. Let : a;b ¥ C be a curve in R® parametrised by arc-length. Let ¢ t . We define

@ Tec 0 t the unit tangent vector at c;
(2) Nc T%c =kT? ¢ k the principal unit normal at ¢; and
(3 Bc T c N c theunit binormal at c.

T ¢ ;N ¢ and B ¢ define an orthonormal basis for R3 for each c 2 C.
Proposition 4.10. Let : a;b ¥ C be a parametrised curve and let c t.
LD Tec ‘t=k "t kand
2)Nc Toc=kT%c k.

Proposition 4.11 (Frenet formula). Let T, N and B denote di [erkntiation with respect to arc-length. Then we
have

T N N T B B N
for a function on the curve called the torsion of the curve.

[2011: End of Lecture 19]



5. Geometry of surfaces

Let R® be a surface. Then Ts 7, the orthogonal space to the tangent space Ts , is one-dimensional so
if zero is removed there are two connected halves. In other words there are two possible unit normals. An
orientation for is a choice of unitnormaln s 2 Ts 7 continuously across the surface. An oriented surface
is a surface with an orientation. If :U ¥ is a parametrisation we say it is oriented if

o
@x?
@

oxT  @x?

(=)
|

<

n X

‘@

The unit normal definesamap n: ¥ S2 called the Gauss map.

If :U ¥ are local parameters for a surface with X s and v and w are in Tg define the second
fundamental form by - 4
X 02
S VW Viwj  ———— X
]
ij 1 0x'0x

P, 0 P, 0
where v i 1Vig and w i 1 Wigx-

[2011: End of Lecture 20]

Proposition 5.1. Let be the second fundamental form at a point s of a surface then:
1 wv;w hn® v ;w i hn® w ;vi,
(2) is independent of the parametrisation.

Note thatheren® v. ns v .

Lemma 5.2. Lets2 andletv 2 Ts . Let the unitnormal ats be n. Then9 >0 and a map a: ;
witha O Oanda’ 0 Oand t s tv atnacurveins.

Proposition 5.3. If isasurface,s 2 , ntheunitnormal ats and v 2 T then the intersection of s T
and near s is a curve whose curvatureis  v;v =kvk?2.

The first fundamental form ats 2 is the inner product g v;w hv; wi.

[2011: End of Lecture 21]

Definition 5.4. Define a function s :Ts ¥ Ts by n?.
Clearly wv;w h v ;wi. issymmetric so it has orthogonal eigenvectors vi1 and v, with eigenvalues 3
and ».

Definition 5.5. Let be as above.

(1) The eigenvalues 1, 2 of are called the principal curvatures.
(2) Their average 1=2 tr is called the mean curvature
(3) Their product det is called the Gaussian curvature.

Proposition 5.6. If v; and v, are a basis for T and jj Vi;Vj and gij g Vi, Vj hvi; vji then
g ! sothat det det j =det gij .

[2011: End of Lecture 22]

6. Integration

6.1. Integration in R". Let R bg a closed bounded subset of R"™ and f: R ¥ R a continuous function. Recall
that we can defined an integral  fdx?!:::dx".



Prgposition 6.1. The integral satisfies:

(i) rFfdx!:::dx"islinearinf, p

(i) if £ x 0 for allx 2 R then g Fdxl:i:dx™ 0

(iii)y if £ x  Othen R Ffdx!:::dx" is the volume in R" 1 of the region consisting of all x%;:::;x" 1 such
that x%;:::;x" 2Rand0 x" 1 f x;y and R R

&iv) if R1 and Ry are two regions with R1 \ R» ;andR Rj; [R2then Ry fdx!l:::dx" R, fdx1:::dx"

g Fdxl:::dx".

We calculate using Fubini’s theorem which we start in the case of R?.

Theorem 6.2 (Fubini). LetZR ?e a closed boundedzregion in R? %ndzf: R T R a continuous function. Then
f X;y dx dy fdxdy f x;y dy dx:
R

Definition 6.3. Let U be an open subset of R™ and f: U T R be continuous and define the support of f
(supp F ) to be theclosureinU of fx 2U jFf x Og.

Theorem 6.4 (Change of variable formula). Let U and V be open subsets of R" and let : U ! V be a di[ed
morphism. Let f:V I R havezsupport which is clzosed and bounded in R" then

fdx?t:::dx" f  jdetJ  jdx':::dx"

u Y
where 0 1
1 @ 1
oxt @xn
e ... @"
ox D axn

is the Jacobian matrix of

6.2. Volume forms and integration. Let V be a vector space of dimension n. An n-form is a multilinear and
totally antisymmetric map

v ) V IR
n times
Multilinear means linear in each of the n factors separately, that is for any wi;vi;:::;vh 2V and a;b 2 R we
have
T vqi;ii;avi bwiiiiivn al¥ vy, ViiiiiiVn b¥ Vil WiiiliVna -
Totally antisymmetric means that if is a permutation of the numbers 1;:::; n with signl denoted by sign
then
¥ v 1,5V n sign ¥ vq;::;Vn
Notice that if ¥ is an n-form then
1 AV4 IR V4 I V4 N V! 1 AV4 I V4 N Y e VA
and hence
If vi;:::;vn is a basis of V we define an n-form vy;:::;vh by
V1,1l Vn Wil wh o det Xjj
P
where wj i Xijvj foreachi 1;:::;n.

We denote the set of all n-forms by det V . It is a vector space and we have

Proposition 6.5. The space of all n-forms, det V , is one dimensional. If ¥ is an n-form and v;;:::;vnhisa
basis then 1 ¥ vi;:i:Vn V1)::1:Vn .

[2011: End of Lecture 23]

Lif ~ is the matrix whose i;j thentryislif i j and zero otherwise then sign det ~ .
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P
Corollary 6.6. Let wi;:::;wp and v1;:::;Vn be bases of V. Let wj J” 1 XijVj, then

V1,11 Vn det Xjj wi;iii;wp !
If RN is an n dimensional submanifold then each tangent space Ts is n dimensional and we can form
det Ts the space of all n-forms on T; . As det T is one dimensional it follows that det Tg fOg
has two connected components. We call oriented if we have picked one of these two components at each s
on inacontinuous manner. If ¥ isin the chosen half of det T TOg then we call it positive. If U 1
is a parametrisation then we say it is oriented if the n form @;@Xl piil @@x” is positive.

An n form ¥ on an n dimensional submanifold is a smooth choice ofan ¥ s 2 det Tg for every s 2
To say what smooth means we choose a parametrisation :U ¥ . Thenif X s we have

1 g I x @— X ;i @ X
@x?t @xn
where from Prop. 6.5 we have that
e ... @
1 X L] X @ X jiil @Xn

We call ¥ smooth if whenever we choose a parametrisation like this the function ¥ : U ¥ R is smooth.

Proposition 6.7. If :V I and :U Y are oriented parametrisations with for :U ¥V then
det J > 0:
Proposition 6.8. If :V I and :U @ are parametrisations with for :U ¥V then

L| det J L|
Note 6.1. This proposition shows that if ¥ is smooth then so also is !

Definition 6.9. If ¥ is a smooth n-form on a submanifold we define its support to be the closure of the set
of points at which it is not zero.

Definition 6.10. If :U ¥ s an oriented parametrisation and ¥ a smooth n form with supportin U
we define z

(I | x dx?t::dx™:
u

Proposition 6.11. If :V ¥ s another oriented parametrisation then| 1 [ |

Note 6.2. To be sure that the integral exists we should really require that the support of ¥ be compact, ie
closed and bounded in RN.

Definition 6.12. Let fW;:::; Wi be an open cover of . A partition of unity sgbordinate to this cover is a
collection of smooth functions j: ¥ 0;1 R such that supp Wijand ; s 1.

If ¥ isan n form with support in the image of Eome (oriented) parametrisation :U @ then we define

LI |
If ¥isa rgore general form we assume that it is possible to find a collection of parametrisations ;: U; I
with i Uj and a partition of unity subordinate to f ; U; g and we define
z < Z
LI il

Note 6.3. (1) The supportof ;¥ isin ; Uj.
(2) The existence of the partition of unity required is guaranteed in much generality which we will not go into
in this course. We shall assume it exists.

Proposition 6.13. The integral of an n form just defined is independent of the choice of parametrisations and
partition of unity.

[2011: End of Lecture 24]
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6.3. Volume forms.

Lemma 6.14. If V is a vector space with an inner product h ; i and ey;:::;en and fy;:::; f, are orthonormal
bases then ej;:::;en L ETRR I

Definition 6.15. If S RN is an oriented submanifold and e;;:::;en is an orthonormal basis of TsS and
e1;:::;en Iis positive we define vols s e1;:::..en , the volume form of S.

Note 6.4. (1) Orthonormal means orthonormal with respect to the inner product on RN restricted to TsS.
(2) The Lemma guarantees that the volume form is independent of the choice or orthonormal basis.
(3) When its obvious from context we will drop the S from vols and just write vol.

Proposition 6.16. Let :U ! S be a parametrisation of S. Let gjj hg?; gﬁi then
4—— 9 @
vols det gij 7':::'

Note 6.5. It follows that vols is a smooth n form.

Proposition 6.17. If R3 is an oriented surface and n is the unit normal to  ats which defines the orientation
then
vol v;w hv  w;ni

forany vandw inTs .

Corollary 6.18. If is an oriented surface then Rvol X;Y h X Y ;ni.

6.4. One forms. If V is a vector space we call a linear map V ¥ R a one-form and denote the set of them all
by V . Ifvy;:::;v™ is a basis of V we can define v; 2 V by requiring that v; v;j ij. The collection

If V is a two dimensional vector space and and are one forms we define  , their wedge product, by
N VW \Y w W V.

forany vandw inV.
[2011: End of Lecture 25]

Let S be asubmanifoldand £: S ¥ R asmooth function. Then foranys 2 S we have thatdf s fls:Ts 1

Ris alinear map. In particular if :U ¥ Sisa parametrisation and b 1 then each of the components of
b bl;:::; b" isafunction b': U ¥ Randhencedb's : Ty ¥ Risalinear map foranys2 U .
We have
Proposition 6.19. The linear mapsdbl s ;:::;db" s area 2asis of the dual space TsS satisfying
- ] : 1 ifi j
db's —— x : e
@xJ J o ifi j
if X S.
Definition 6.20. A qge form is a choice of linear map s : TsS ¥ R for every s. Any one form can be
expanded as s 1, isdbls andwesay issmoothifeachofthe ;: U 1@ Rissmooth.
Lemma 6.21. If :U ¥ isa parametrisation of a surface then
e .@
d bl ~d b2 :
Ox1’ @x?

[2011: End of Lecture 26]

Proposition 6.22. (1) If :U ¥ s a parametrisation of a surface and is a one form then the two form
d defined by
X .
d s dis ~db's
il
@ 2 1 01 1 1 2 .
@T X @7 X d b s ~d b S :
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is independent of the parametrisation.
(2) If ¥ isa functionon thend f daf »~ fd .

A closed surface is a two dimensional submanifold of R® which is closed and bounded. It follows that it has
no boundary.

R
Proposition 6.23 (Weak Green’s Theorem). If is a one form on an oriented closed surface then d 0.

7. Gauss-Bonnet Theorem

Proposition 7.1. Let { be a family of closed oriented surfaces in R® depending smoothly on a parameter t.
Define X h%’; dn X ;ni then

d
—R | d :
at t VOl

gorollary 7.2. Let  be a family of closed oriented surfaces in R3 depending smoothly on a parameter t. Then
. Revol is independent of t.

Recall that for a sphere we have 7

1
— Rvol 2:
2 52

Definition 7.3. We say a surface °is obtained from a surface by adding a handle if we remove two disks
from and attach to the two resulting circles in each end of a cylinder.
[2011: End of Lecture 27]

Proposition 7.4. If the oriented closed surface  is obtained from the oriented closed surface by adding a
handle then Z Z

1 1
— Rvol — Rvol 2
2 0 2

Corollary 7.5. If is obtained from a sphere byzadding g handles then

1
— Rvol 2 2g:
> g

It is a theorem in topology that if is a closed surface in R® then is homeomorphic to a sphere with g
handles.

7.1. Tessellations.

Definition 7.6. Let be a surface in R3. A tessellation T for is a decomposition of into vertices, edges
and faces such that each face is homeomorphic to a polygon.

A tessellation where every face has three edges is called a triangulation.

Definition 7.7. Let T be a tessellation of a surface and let v be the number of vertices, e the number of
edges and T the number of faces. Define

T v e F:

Proposition 7.8. Let be a surface and T and T tessellations. Then T T

If is a surface we define its Euler characteristic to be ;T for some some tessellation.

Proposition 7.9. If is a surface of genus g, ie it is obtained from a sphere by adding g handles then
2 2g.

Note 7.1. This gives an alternative way of calculating g namely g 1=2 2
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Theorem 7.10 (Gauss-Bonnet). If isa clozsed oriented surface then

1
—  Rvol 2 2
> g

[2011: End of Lecture 28]



