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1. Review

We have the usual notation R for the real numbers, Rn for n-tuples of real numbers and N � f1;2;3; : : : g for

the natural numbers. Recall that if x � �x1; : : : ; xn� and y � �y1; : : : ; yn� are in Rn then kxk �
qPn

i�1�xi�2

and hx;yi �
Pn
i�1 xiyi. These satisfy

hx;yi � kxkkyk Cauchy’s inequality;
kx �yk � kxk � kyk Triangle inequality

and
maxfjx1j; : : : ; jxnjg � kxk �

p
nmaxfjx1j; : : : ; jxnjg:
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Note 1.1. Those who have done Real Analysis or Topology and Analysis will recall that Rn with the Euclidean
metric d�x;y� � kx � yk is a metric space. We don’t need the metric notion for this course but we will
use many of the other notions of metric spaces such as open balls, open sets, sequences, limits and contin-
uous functions but usually only for the metric space Rn. We will only need sequences briefly to prove the
Contraction Mapping Theorem.

The open ball around x 2 Rn of radius � > 0 is B�x; �� � fy 2 Rn j kx � yk < �g and a subset U � Rn is
called open if for every x 2 U there is some � > 0 such that B�x; �� � U .

A sequence in Rn is a function N � f1;2; : : : g ! Rn usually denoted by its set of values x1; x2; : : : or �xn�1n�0
or often just �xn�. A sequence �xn� has limit x 2 Rn if for all � > 0 there is an N such that for all n � N we
have kxn�xk < �. In such a case we also say that xn converges to x and write limn!1 xn � x or just xn ! x.

[2011: End of Lecture 1]

Lemma 1.1. If �xn� has a limit it is unique.

Lemma 1.2. A sequence �xn� has limit x 2 Rn if and only if limn!1 kxn � xk � 0.

Lemma 1.3 (Squeeze Lemma). Let �xn�, �yn� and �zn� be sequences of real numbers with xn � yn � zn for
all n. If xn ! x and zn ! x then yn ! x.

Proposition 1.4 (Properties of limits of sequences).

(1) If xm � �x1
m; : : : ; xnm� 2 Rn then limm!1 xm � x � �x1; : : : ; xn� if and only if limm!1 xim � xi for all

i � 1; : : : ; n.
(2) If xn ! x and yn ! y and �;� 2 R then �xn � �yn ! �x � �y .

Lemma 1.5. If xn ! x then limm;n!1 kxn � xmk ! 0.

A sequence with limm;n!1 kxn � xmk ! 0 is called Cauchy.

Theorem 1.6. Every Cauchy sequence in Rn converges.

[2011: End of Lecture 2]

Definition 1.7. Let a 2 U � Rn, U open and f : U �fag ! Rm. We say that f has limit L at a if 8� > 0 9� > 0
such that if kx � ak < � and x 2 U then kf�x�� Lk < �.

If f has a limit L at a it is unique and we write limx!a f�x� � L.

Proposition 1.8. A function f : U � fag ! Rm has limit L at a if and only if for all sequences �xn� � U � fag
with xn ! a we have f�xn�! L.

Lemma 1.9 (Squeeze Lemma). Let f ; g;h : U � fag ! R be functions with f�x� � g�x� � h�x� for all x 2
U � fag. If limx!a f�x� � L � limx!a h�x� then limx!a g�x� � L.

Proposition 1.10 (Properties of limits).

(1) Let f : U � fag ! Rm and let f�x� � �f 1�x�; : : : ; fm�x� where f i : U � fag ! R for each i � 1; : : :m.
Then limx!a f�x� � f�a� if and only if for every i � 1; : : :m we have limx!a f i�x� � f i�a�.

(2) Let f ; g : U � fag ! Rm with limx!a f�x� � L and limx!a g�x� � J. If �;� 2 R then limx!a�f�x��
�g�x� � �L� �J.

Definition 1.11. Let U be open in Rn and f : U ! Rm. We say that f is continuous at a 2 U if limx!a f�x� �
f�a� and we say that f is continuous on U if f is continuous at every a 2 U .

Proposition 1.12. A function f is continuous at a if and only if limx!a kf�x�� f�a�k � 0.

Proposition 1.13. A function f : U ! Rm is continuous at a if and only if for every sequence with xn ! a we
have f�xn�! f�a�.

[2011: End of Lecture 3]
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Proposition 1.14 (Properties of continuous functions).

(1) If U is open in Rn and f ; g : U ! Rm are continuous and �;� 2 R then �f � �g is continuous.
(2) If U is open in Rn and f : U ! Rm then f � �f 1; : : : ; fm� is continuous if and only if each f i : U ! R is

continuous for every i � 1; : : : ;m.
(3) If f : U ! Rm and g : V ! Rk and U is open in Rn and V is open in Rm and f�U� � V then f and g

continuous implies that g � f is continuous.

Let X � Rn. Recall that f : X ! X is called a contraction if there exists 0 � K < 1 such that for all x;y 2 X
we have kf�x�� f�y�k � Kkx �yk.
Proposition 1.15 (Contraction mapping theorem). If f : B�0; r �! B�0; r � is a contraction then there is a unique
x 2 B�0; R� such that f�x� � x.

Note 1.2. Those of you who have done Real Analysis will know that the Contraction Mapping Theorem is
usually proved for a contraction on a complete metric space. That more general result reduces to this case
as B�0; r � is a closed subset of the complete metric space Rn and hence complete.

2. Differentiation in Rn.

Definition 2.1. Let U be open in Rn and f : U ! Rm. We say that f is differentiable at a 2 U if there is a
linear map L : Rn ! Rm such that

lim
h!0

kf�a� h�� f�a�� L�h�k
khk � 0:

Lemma 2.2. If f is differentiable at a then the L in the definition is unique.

If f is differentiable at a we denote the linear map L by f 0�a�. If f is differentiable at every a 2 U we say
that f is differentiable on U .

[2011: End of Lecture 4]

Proposition 2.3. Let U be open in Rn and f : U ! Rm. Define f i : U ! R for i � 1; : : : ;m by f�x� �
�f 1�x�; : : : ; fm�x� for all x 2 U . Then f is differentiable at a 2 U if and only if each of the f i is differ-
entiable at a and f 0�a� � �f 10�a�; : : : ; fm0�a��.

Lemma 2.4. The function f is differentiable at a if and only if there exists a linear function L, an � > 0 and a
function R : B�0; ��! Rm such that f�a� h� � f�a�� L�h�� R�h� and limh!0 kR�h�k=khk � 0.

Proposition 2.5. If L : Rn ! Rm is linear and v 2 Rm then f�x� � L�x�� v is differentiable on all of Rn and
f 0�x� � L.

Proposition 2.6. If f : U ! Rm is differentiable at a then f is continuous at a.

Lemma 2.7. If f is differentiable at a then 8� > 0 9� > 0 such that if khk < � then kf�a � h� � f�h�k �
�kf 0�a�k � ��khk.
Proposition 2.8. If f ; g : U ! Rm are differentiable at a 2 Rn and �;� 2 R then �f � �g is differentiable at
a and ��f � �g�0�a� � �f 0�a�� �g0�a�.

[2011: End of Lecture 5]

Proposition 2.9. If f ; g : U ! R are differentiable at a 2 Rn then fg is differentiable at a and �fg�0�a� �
f�a�g0�a�� g�a�f 0�a�.
Proposition 2.10 (Chain Rule). Let f : U ! Rm and g : V ! Rk where U is open in Rn and V is open in Rm with
f�U� � V . Then if f is differentiable at a and g is differentiable at f�a� then g � f is differentiable at a and
�g � f�0�a� � g0�f �a�� � f 0�a�.

[2011: End of Lecture 6]
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Proposition 2.11. If U � Rn is open and f : U ! Rm is differentiable at a and v 2 Rn then

f 0�a��v� � d
dt
f�a� tv�

����
t�0
:

Corollary 2.12. Let f be as above and write f � �f 1; : : : ; fm�. Let ei be the vector with a 1 in the ith place and
zeros elsewhere. Then

f 0�a��ei� �
 
@f 1

dxi
�a�; : : : ;

@fm

@xi
�a�

!
:

so that the linear map f 0�a� : Rn ! Rm is the Jacobian matrix

J�f��a� � @f
i

@xj
�a�:

2.1. Functions of class Ck.

Definition 2.13. Let f : U ! R for U open in Rn. We say that f is (of class) Ck if all partial derivatives of f
exist and are continuous on U up to and including order k. We write C0 for continuous functions and C1 or
smooth for functions which are in Ck for every k. The set of all Ck functions on U is denoted by Ck�U� or
Ck�U;R�.

Let f : U ! Rm for U open in Rn and let f � �f 1; : : : ; fm�. We say that f is Ck if each f i : U ! R is Ck for
i � 1; : : : ;m. Again we write Ck�U;Rm� for the set of all such f .

Lemma 2.14. Let a < b < c and assume that f : �a; c� ! R is continuous and f 0 : �a; b� [ �b; c� ! R is
continuous and

� � lim
t!b�

f 0�x� � lim
t!b�

f 0�x�

then f is C1 on �a; c� and f 0�b� � �.

[2011: End of Lecture 7]

Proposition 2.15. If f 2 C1�U� then f is differentiable at a for all a 2 U .

Proposition 2.16. If f 2 C2�U� then
@2f
@xi@xj

� @2f
@xj@xi

on U . Similarly if f is Ck for k � 2 then all partial derivatives up to order including k are independent of order.

Proposition 2.17. Ck�U;Rm� is a vector space.

Proposition 2.18 (Chain Rule). Let f : U ! Rm and g : V ! Rk where U is open in Rn and V is open in Rm with
f�U� � V . Assume that f and g are C1 then

@�g � f�j
@xi

�a� �
mX
l�1

@gj

@xl
�f �a��

@f l

@xi
�a�:

for every i � 1; : : : ; n and j � 1; : : : ; k.

[2011: End of Lecture 8]

2.2. Mean Value Theorem. For any x0 and x1 in Rn we define �x0; x1� to be the line segment joining x0 to
x1 that is �x0; x1� � f�1� t�x0 � tx1 j t 2 �0;1�g.

Proposition 2.19 (Mean Value Theorem). If U is open in Rn and f : U ! Rm is differentiable and �x0; x1� � U
and u 2 Rm then 9�u 2 �x0; x1� such that

hf�x1�;ui � hf�x0�;ui � hf 0��u��x1 � x0�;ui:

Corollary 2.20. If U is open in Rn and h : U ! Rm is differentiable and kh0���k � � 8� 2 �x0; x1� then
kh�x0�� h�x1�k < �kx0 � x1k.
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2.3. Inverse Function Theorem.

Theorem 2.21 (Inverse Function Theorem). Let U be open in Rn and f : U ! Rn be Ck for k � 1. Assume that
f 0�a� is invertible for some a 2 U . Then there is an open set V � U with a 2 V such that:
(1) f�V� is open,
(2) f : V ! f�V� is invertible,
(3) f�1 is Ck, and
(4) �f�1�0�f �a�� � �f 0�a���1.

[2011: End of Lecture 9]

[2011: End of Lecture 10]

Corollary 2.22 (Open mapping theorem). Let U be open in Rn and f : U ! Rn be such that f 0�x� is invertible
for all x 2 U . Then f�U� is open in Rn.

Definition 2.23. If U and V are open in Rn and f : U ! V is Ck with a Ck inverse then f is called a Ck
diffeomorphism.

For the implicit function theorem we need the following notation. If x 2 Rn and y 2 Rm then we denote by
�x;y� the obvious element Rn �Rm.

Theorem 2.24 (Implicit Function Theorem). Let U be open in Rn�m, �x0; y0� 2 U and F : U ! Rm be Ck. If
F�x0; y0� � 0 and

@F
@y
�x0; y0� �

0BBB@
@F1

@y1 �x0; y0� : : : @F1

@ym �x0; y0�
...

. . .
...

@Fm
@y1 �x0; y0� : : : @Fm

@ym �x0; y0�

1CCCA
is non-singular then there exists an open set eV � Rn�m containing �x0; y0� and a Ck function f : V ! Rm,
where V � fx 2 Rn j �x;0� 2 eVg such thateV \ f�x;y� j F�x;y� � 0g � f�x; f �x�� j x 2 Vg:

3. Submanifolds

Definition 3.1. A subset S � RN is called a submanifold of dimension n if for all s 2 S there exists a U open
in RN , containing s, and a smooth map� : U ! RN such that��U� is open, � : U ! ��U� is a diffeomorphism
and

S \U � fx 2 U j ��n�1�x�; : : : ;�N�x�� � 0g:

[2011: End of Lecture 11]

Theorem 3.2. Let S � RN then the following are equivalent.
(1) S is a submanifold of dimension n;
(2) for every s 2 S there is an open set U � RN containing s and a smooth function F : U ! RN�n such that
F 0�x� is onto for all x 2 S \U and S \U � fx 2 U j F�x� � 0g;
(3) for all s 2 S there exists V open in RN such that S \ V is the graph of a smooth function of n of the N
variables;
(4) for all s 2 S there is a V open in RN containing s and U open in Rn and an f : U ! V which is one to one
with f 0�x� one to one for all x 2 U and such that S \ V � f�U�.

[2011: End of Lecture 12]

Corollary 3.3. If U is open in RN and F : U ! RN�n is smooth with F 0�x� onto for all x 2 S � F�1f0g then S is
a submanifold of dimension n.

Definition 3.4. Let S � RN be an n dimensional submanifold. If U is an open set in RN and F : U ! RN�n

is smooth with F 0�s� onto for all s 2 S \ U and S \ U � fs 2 U j F�s� � 0g then F is called a local defining
equation for S.
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Definition 3.5. Let S � RN be an n dimensional submanifold. If U is an open subset of Rn and V an open
subset of RN and  : U ! V is smooth and one to one with  0�x� one to one for all x 2 U and  �U� � S \ V
then  is called a local parametrisation of S.

3.1. Tangent space to a submanifold.

Definition 3.6. Let s be a point in a submanifold S � RN . Let � > 0. Then a smooth map  : ���; ��! S � RN

with �0� � s is a called a smooth path in S through s.

[2011: End of Lecture 13]

Definition 3.7. Define TsS to be the union of all the vectors 0�0� for  a smooth path in S through s. Call it
the tangent space to S at s.

Proposition 3.8. TsS is an n-dimensional subspace of RN .

Proposition 3.9. If F is a local defining equation for S defined on an open set containing s then TsS � kerF 0�s�.
If  is a local parametrisation for S with  �x� � s then TsS � im  0�x�. Moreover @ 

@x1 �x�; : : : ; @ @xn �x� are a
basis for TsS.

[2011: End of Lecture 14]

3.2. Smooth functions on submanifolds. Let S � RN be a submanifold and let f : S ! R be a function.

Definition 3.10. We say that f is a smooth function if for all s 2 S there is an open set U � RN with s 2 U
and a smooth function f̃ : U ! R such that fjS\U � f̃S\U .

Proposition 3.11. Let S � RN be a submanifold and f : S ! R a function.
(1) If  : U ! S is a parametrisation and f is smooth then f � : U ! R is smooth.
(2) If for every s 2 S there is a parametrisation  : U ! S with s 2  �U� such that f � : U ! R is smooth
then f is smooth.

[2011: End of Lecture 15]

Proposition 3.12. Let S � RN be a submanifold and  : U ! S and � : V ! S be parametrisations with
 �U� � ��V� then  �1 � � : V ! U is a diffeomorphism.

[2011: End of Lecture 16]

Let S be a submanifold and f : S ! R be a smooth function.

Proposition 3.13. Let U � RN be open and g : U ! RN be a smooth function with image g�U� inside a smooth
submanifold S � RN . If f : S ! Rm is smooth then f � g : U ! Rm is smooth.

Proposition 3.14. Let S � RN be a smooth submanifold and f : S ! Rm be a smooth function. If1; 2 : ���; ��!
S be two smooth paths through s 2 S with 01�0� � 02�0� then

�f � 1�0�0� � �f � 2�0�0�:

If f : S ! Rm is smooth and v 2 TsS we define f 0�s��v� 2 Rm by choosing a smooth path  through s with
0�0� � v and letting f 0�s��v� � �f � �0�0�.

Proposition 3.15. The function f 0�s� : TsS ! Rm is well-defined and linear. Moreover if f̃ is an extension of f
then f 0�s� � f̃ 0�s�jTsS .

Proposition 3.16. Let S � RN be a submanifold and f : S ! Rm be smooth. If g : U ! RN is smooth with
g�U� � S then

�f � g�0�x� � f 0�g�x�� � g0�x�:
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4. Geometry of curves

Definition 4.1. A curve is a one-dimensional submanifold.

If c is a point in a curve C then TcC is one-dimensional so that TcC � f0g has two connected components. A
continuous choice of one of these two components at each point of C is called an orientation and a curve with
an orientation is called an oriented curve.

Definition 4.2. A parametrised curve C is a curve for which there is a parametrisation  : �a; b� ! C with
�a;b� � C .

For a parametrisation 0�t� � 0. If 0�t� is in the chosen half of T�t�C for an oriented curve C then we say
the parametrisation is oriented.

Definition 4.3. We say a parametrised curve is parametrised by arc length if k0�t�k � 1 for all t.

[2011: End of Lecture 17]

Proposition 4.4. If  : �a; b�! C is a parametrised curve then it has a parametrisation by arc-length.

Lemma 4.5. If �t� and e�t� are two arc length parametrisations of a curve C then there is a t0 2 R such that
�t� � e�t � t0� for all t.

Lemma 4.6. If �t� is parametrised by arc length then h00�t�; 0�t�i � 0.

Definition 4.7. If C is a curve with an arc length parametrisation �t� then the curvature of C at c � �t� is
��c� � k00�t�k.

[2011: End of Lecture 18]

Proposition 4.8. If C is a curve and �t� is a (not necessarily arc-length) parametrisation then

� � 1
k0k2

00 � 0 h0; 00ik0k2


� 1
k0k2

 
k00k2 � h

0; 00i2
k0k2

!1=2

4.1. Curves in R3.

Definition 4.9. Let  : �a; b�! C be a curve in R3 parametrised by arc-length. Let c � �t�. We define

(1) T�c� � 0�t� the unit tangent vector at c;
(2) N�c� � T 0�c�=kT 0�c�k the principal unit normal at c; and
(3) B�c� � T�c��N�c� the unit binormal at c.

T�c�;N�c� and B�c� define an orthonormal basis for R3 for each c 2 C .

Proposition 4.10. Let  : �a; b�! C be a parametrised curve and let c � �t�.

(1) T�c� � 0�t�=k0�t�k and
(2) N�c� � T 0�c�=kT 0�c�k.

Proposition 4.11 (Frenet formula). Let Ṫ , Ṅ and Ḃ denote differentiation with respect to arc-length. Then we
have

Ṫ � �N Ṅ � ��T � �B Ḃ � ��N
for a function � on the curve called the torsion of the curve.

[2011: End of Lecture 19]
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5. Geometry of surfaces

Let Ö � R3 be a surface. Then TsÖ?, the orthogonal space to the tangent space TsÖ, is one-dimensional so
if zero is removed there are two connected halves. In other words there are two possible unit normals. An
orientation for Ö is a choice of unit normal n�s� 2 TsÖ? continuously across the surface. An oriented surface
is a surface with an orientation. If  : U ! Ö is a parametrisation we say it is oriented if

n �
@ 
@x1 � @ 

@x2 @ @x1 � @ 
@x2

 :
The unit normal defines a map n : Ö! S2 called the Gauss map.

If  : U ! Ö are local parameters for a surface Ö with  �x� � s and v and w are in TsÖ define the second
fundamental form � by

��s��v;w� �
2X

i;j�1

viwj

*
@2 
@xi@xj

�x�;n
+

where v �
P2
i�1 vi

@ 
@xi and w �

P2
i�1wi

@ 
@xi .

[2011: End of Lecture 20]

Proposition 5.1. Let � be the second fundamental form at a point s of a surface Ö then:
(1) ��v;w� � �hn0�v�;w�i � �hn0�w�;vi,
(2) � is independent of the parametrisation.

Note that here n0�v� � n0�s��v�.

Lemma 5.2. Let s 2 Ö and let v 2 TsÖ. Let the unit normal at s be n. Then 9� > 0 and a map a : ���; �� ! Ö
with a�0� � 0 and a0�0� � 0 and �t� � s � tv � a�t�n a curve in S.

Proposition 5.3. If Ö is a surface, s 2 Ö, n the unit normal at s and v 2 TsÖ then the intersection of s � TsÖ
and Ö near s is a curve whose curvature is ��v;v�=kvk2.

The first fundamental form at s 2 Ö is the inner product g�v;w� � hv;wi.

[2011: End of Lecture 21]

Definition 5.4. Define a function Õ�s� : TsÖ! TsÖ by Õ � �n0.
Clearly ��v;w� � hÕ�v�;wi. Õ is symmetric so it has orthogonal eigenvectors v1 and v2 with eigenvalues �1

and �2.

Definition 5.5. Let Õ be as above.

(1) The eigenvalues �1, �2 of Õ are called the principal curvatures.
(2) Their average �1=2� tr�Õ� is called the mean curvature
(3) Their product det�Õ� is called the Gaussian curvature.

Proposition 5.6. If v1 and v2 are a basis for TsÖ and �ij � ��vi; vj� and gij � g�vi; vj� � hvi; vji thenÕ � �g�1 so that det�Õ� � det��ij�=det�gij�.

[2011: End of Lecture 22]

6. Integration

6.1. Integration in Rn. Let R be a closed bounded subset of Rn and f : R ! R a continuous function. Recall
that we can defined an integral

R
R fdx1 : : : dxn.
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Proposition 6.1. The integral satisfies:
(i)
R
R fdx1 : : : dxn is linear in f ,

(ii) if f�x� � 0 for all x 2 R then
R
R fdx1 : : : dxn � 0

(iii) if f�x� � 0 then
R
R fdx1 : : : dxn is the volume in Rn�1 of the region consisting of all �x1; : : : ; xn�1� such

that �x1; : : : ; xn� 2 R and 0 � xn�1 � f�x;y� and
(iv) if R1 and R2 are two regions with R1 \R2 � ; and R � R1 [R2 then

R
R1
fdx1 : : : dxn �

R
R2
fdx1 : : : dxn �R

R fdx1 : : : dxn.

We calculate using Fubini’s theorem which we start in the case of R2.

Theorem 6.2 (Fubini). Let R be a closed bounded region in R2 and f : R ! R a continuous function. ThenZ �Z
f�x;y�dx

�
dy �

Z
R
fdxdy �

Z �Z
f�x;y�dy

�
dx:

Definition 6.3. Let U be an open subset of Rn and f : U ! R be continuous and define the support of f
(supp�f �) to be the closure in U of fx 2 U j f�x� � 0g.

Theorem 6.4 (Change of variable formula). Let U and V be open subsets of Rn and let � : U ! V be a diffeo-
morphism. Let f : V ! R have support which is closed and bounded in Rn thenZ

U
fdx1 : : : dxn �

Z
V
f � �jdet�J����jdx1 : : : dxn

where

J��� �

0BBB@
@�1

@x1 : : : @�1

@xn
...

. . .
...

@�n
@x1 : : : @�n

@xn

1CCCA
is the Jacobian matrix of  .

6.2. Volume forms and integration. Let V be a vector space of dimension n. An n-form is a multilinear and
totally antisymmetric map

! : V � � � � � V
n times

! R:

Multilinear means linear in each of the n factors separately, that is for anywi; v1; : : : ; vn 2 V and a;b 2 R we
have

!�v1; : : : ; avi � bwi; : : : ; vn� � a!�v1; : : : ; vi; : : : ; vn�� b!�v1; : : : ;wi; : : : ; vn�:
Totally antisymmetric means that if � is a permutation of the numbers 1; : : : ; n with sign1 denoted by sign���
then

!�v��1�; : : : ; v��n�� � sign���!�v1; : : : ; vn�:
Notice that if ! is an n-form then

!�v1; : : : ; vi; : : : ; vj ; : : : ; vn� � �!�v1; : : : ; vj ; : : : ; vi; : : : ; vn�

and hence
!�v1; : : : ; v; : : : ; v; : : : ; vn� � 0:

If v1; : : : ; vn is a basis of V we define an n-form �v1; : : : ; vn� by

�v1; : : : ; vn��w1; : : : ;wn� � det�Xij�

where wi �
Pn
j Xijvj for each i � 1; : : : ; n.

We denote the set of all n-forms by det�V��. It is a vector space and we have

Proposition 6.5. The space of all n-forms, det�V��, is one dimensional. If ! is an n-form and v1; : : : ; vn is a
basis then ! �!�v1; : : : ; vn��v1; : : : ; vn�.

[2011: End of Lecture 23]

1If �̂ is the matrix whose �i; j�th entry is 1 if ��i� � j and zero otherwise then sign��� � det��̂�.
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Corollary 6.6. Let w1; : : : ;wn and v1; : : : ; vn be bases of V . Let wi �
Pn
j�1Xijvj , then

�v1; : : : ; vn� � det�Xij��w1; : : : ;wn�:

If Ö � RN is an n dimensional submanifold then each tangent space TsÖ is n dimensional and we can form
det�TsÖ�� the space of all n-forms on TsÖ. As det�TsÖ�� is one dimensional it follows that det�TsÖ�� � f0g
has two connected components. We call Ö oriented if we have picked one of these two components at each s
on Ö in a continuous manner. If! is in the chosen half of det�TsÖ���f0g then we call it positive. If : U ! Ö
is a parametrisation then we say it is oriented if the n form � @ @x1 ; : : : ; @ @xn � is positive.

An n form ! on an n dimensional submanifold is a smooth choice of an !�s� 2 det�TsÖ�� for every s 2 Ö.
To say what smooth means we choose a parametrisation  : U ! Ö. Then if  �x� � s we have

!�s� �! �x�
�
@ 
@x1

�x�; : : : ;
@ 
@xn

�x�
�

where from Prop. 6.5 we have that

! �x� �!� �x��
�
@ 
@x1

�x�; : : : ;
@ 
@xn

�x�
�
:

We call ! smooth if whenever we choose a parametrisation like this the function ! : U ! R is smooth.

Proposition 6.7. If � : V ! Ö and  : U ! Ö are oriented parametrisations with � �  � � for � : U ! V then

det�J���� > 0:

Proposition 6.8. If � : V ! Ö and  : U ! Ö are parametrisations with � �  � � for � : U ! V then

!� � det�J����! � �:
Note 6.1. This proposition shows that if ! is smooth then so also is !�.

Definition 6.9. If! is a smooth n-form on a submanifold Ö we define its support to be the closure of the set
of points at which it is not zero.

Definition 6.10. If  : U ! Ö is an oriented parametrisation and ! a smooth n form with support in  �U�
we define

I �!� �
Z
U
! � dx1 : : : dxn:

Proposition 6.11. If � : V ! Ö is another oriented parametrisation then I �!� � I��!�.
Note 6.2. To be sure that the integral exists we should really require that the support of ! be compact, ie
closed and bounded in RN .

Definition 6.12. Let fW1; : : : ;Wk be an open cover of Ö. A partition of unity subordinate to this cover is a
collection of smooth functions �i : Ö! �0;1� � R such that supp��i� � Wi and

P
i �is � 1.

If ! is an n form with support in the image of some (oriented) parametrisation  : U ! Ö then we defineZ
Ö! � I �!�:

If ! is a more general form we assume that it is possible to find a collection of parametrisations  i : Ui ! Ö
with Ö � S i�Ui� and a partition of unity subordinate to f i�Ui�g and we defineZ

Ö! �
X
i

Z
 i
�i!:

Note 6.3. (1) The support of �i! is in  i�Ui�.
(2) The existence of the partition of unity required is guaranteed in much generality which we will not go into
in this course. We shall assume it exists.

Proposition 6.13. The integral of an n form just defined is independent of the choice of parametrisations and
partition of unity.

[2011: End of Lecture 24]
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6.3. Volume forms.

Lemma 6.14. If V is a vector space with an inner product h ; i and e1; : : : ; en and f1; : : : ; fn are orthonormal
bases then �e1; : : : ; en� � ��f1; : : : ; fn�.

Definition 6.15. If S � RN is an oriented submanifold and e1; : : : ; en is an orthonormal basis of TsS and
�e1; : : : ; en� is positive we define volS�s� � �e1; : : : ; en�, the volume form of S.

Note 6.4. (1) Orthonormal means orthonormal with respect to the inner product on RN restricted to TsS.
(2) The Lemma guarantees that the volume form is independent of the choice or orthonormal basis.
(3) When its obvious from context we will drop the S from volS and just write vol.

Proposition 6.16. Let  : U ! S be a parametrisation of S. Let gij � h @ @xi ;
@ 
@xj i then

volS �
q

det�gij�
�
@ 
@x1

; : : : ;
@ 
@xn

�
:

Note 6.5. It follows that volS is a smooth n form.

Proposition 6.17. If Ö � R3 is an oriented surface andn is the unit normal to Ö at s which defines the orientation
then

volÖ�v;w� � hv �w;ni
for any v and w in TsÖ.

Corollary 6.18. If Ö is an oriented surface then R volÖ�X; Y� � hÕ�X��Õ�Y�;ni.
6.4. One forms. If V is a vector space we call a linear map V ! R a one-form and denote the set of them all
by V�. If v1; : : : ; vn is a basis of V we can define v�i 2 V� by requiring that v�i �vj� � �ij . The collection
v�1 ; : : : ; v�n is a basis of V� called the dual basis to v1; : : : ; vn.

If V is a two dimensional vector space and � and � are one forms we define �^ �, their wedge product, by

��^ ���v;w� � ��v���w����w���v�:
for any v and w in V .

[2011: End of Lecture 25]

Let S be a submanifold and f : S ! R a smooth function. Then for any s 2 S we have that df�s� � f 0�s� : TsÖ!
R is a linear map. In particular if  : U ! S is a parametrisation and b �  �1 then each of the components ofb � � b 1; : : : ; b n� is a function b i :  �U� ! R and hence d b i�s� : TsÖ ! R is a linear map for any s 2  �U�.
We have

Proposition 6.19. The linear maps d b 1�s�; : : : ; d b n�s� are a basis of the dual space TsS� satisfying

d b i�s�� @ 
@xj

�x�
�
� �ij �

(
1 if i � j
0 if i � j

if  �x� � s.
Definition 6.20. A one form � is a choice of linear map ��s� : TsS ! R for every s. Any one form can be
expanded as ��s� �

Pn
i�1 �i�s�d b i�s� and we say � is smooth if each of the �i :  �U�! R is smooth.

Lemma 6.21. If  : U ! Ö is a parametrisation of a surface Ö then

d b 1 ^ d b 2 �
�
@ 
@x1

;
@ 
@x2

�
:

[2011: End of Lecture 26]

Proposition 6.22. (1) If  : U ! Ö is a parametrisation of a surface Ö and � is a one form then the two form
d� defined by

d��s� �
2X
i�1

d�i�s�^ d b i�s�
�
�
@�2 � 
@x1

� �1�x��� @�1 � 
@x2

� �1�x��
�
d b 1�s�^ d b 2�s�:
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is independent of the parametrisation.
(2) If f is a function on Ö then d�f�� � df ^ �� fd�.

A closed surface is a two dimensional submanifold of R3 which is closed and bounded. It follows that it has
no boundary.

Proposition 6.23 (Weak Green’s Theorem). If � is a one form on an oriented closed surface Ö then
RÖ d� � 0.

7. Gauss-Bonnet Theorem

Proposition 7.1. Let Öt be a family of closed oriented surfaces in R3 depending smoothly on a parameter t.
Define ��X� � hdndt � dn�X�;ni then

d
dt
Rt volt � d�:

Corollary 7.2. Let Öt be a family of closed oriented surfaces in R3 depending smoothly on a parameter t. ThenRÖt Rt vol is independent of t.

Recall that for a sphere we have
1

2�

Z
S2
R vol � 2:

Definition 7.3. We say a surface Ö0 is obtained from a surface Ö by adding a handle if we remove two disks
from Ö and attach to the two resulting circles in Ö each end of a cylinder.

[2011: End of Lecture 27]

Proposition 7.4. If the oriented closed surface Ö0 is obtained from the oriented closed surface Ö by adding a
handle then

1
2�

Z
Ö0 R vol � 1

2�

Z
Ö R vol�2

Corollary 7.5. If Ö is obtained from a sphere by adding g handles then

1
2�

Z
Ö R vol � 2� 2g:

It is a theorem in topology that if Ö is a closed surface in R3 then Ö is homeomorphic to a sphere with g
handles.

7.1. Tessellations.

Definition 7.6. Let Ö be a surface in R3. A tessellation T for Ö is a decomposition of Ö into vertices, edges
and faces such that each face is homeomorphic to a polygon.

A tessellation where every face has three edges is called a triangulation.

Definition 7.7. Let T be a tessellation of a surface Ö and let v be the number of vertices, e the number of
edges and f the number of faces. Define

��Ö; T � � v � e� f :
Proposition 7.8. Let Ö be a surface and T and T 0 tessellations. Then ��Ö; T � � ��Ö; T 0�.
If Ö is a surface we define its Euler characteristic ��Ö� to be ��Ö; T � for some some tessellation.

Proposition 7.9. If Ö is a surface of genus g, ie it is obtained from a sphere by adding g handles then ��Ö� �
2� 2g.

Note 7.1. This gives an alternative way of calculating g�Ö� namely g�Ö� � �1=2��2� ��Ö��.
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Theorem 7.10 (Gauss-Bonnet). If Ö is a closed oriented surface then
1

2�

Z
Ö R vol � ��Ö� � 2� 2g�Ö�:

[2011: End of Lecture 28]


