Examination in School of Mathematical Sciences

105919 Geometry of Surfaces III - MOCK EXAM PURE MTH 3022

Official Reading Time: 10 mins
Writing Time: $\quad 120 \mathrm{mins}$
Total Duration: 130 mins

NUMBER OF QUESTIONS: 5 TOTAL MARKS: 70

Instructions

- Attempt all questions.
- Approximate marks are indicated.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.

Materials

- 1 Blue book is provided.
- Calculators are not permitted.

1. For each of the following statements say whether it is True or False. Give a very short justification or counter-example in each case.
(a) The curve $\gamma(t)=\left(t, t^{2}, t^{99}\right)$ is arc-length parametrised.
(b) A curve with constant unit tangent T has zero curvature κ.
(c) It is possible to find a tessellation of the torus with 100 vertices, 92 edges and 76 faces.
(d) A cylinder has Gaussian curvature which is everywhere positive.
(e) There exists a surface with principal curvatures $\lambda_{1}>0$ and $\lambda_{2}<0$ and Gaussian curvature zero.
2. (a) Define the tangent space, $T_{s} S$ to a submanifold $S \subset \mathbb{R}^{N}$ at a point $s \in S$.
(b) Assume that $\psi: U \rightarrow S$ is a parametrisation of S where U is open in \mathbb{R}^{n}. Show that $T_{s} S=\operatorname{im} \psi^{\prime}(x)$ if $s=\psi(x)$. You may assume that $\operatorname{dim}\left(T_{s} S\right)=n$.
(c) Consider the submanifold defined by the equation $x^{2}+y^{2}=z$ in \mathbb{R}^{3}. Find the tangent space at a general point.
[10 marks]
3. (a) Let $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ be a parametrised curve. Define T, N and B.
(b) Consider the parametrised curve C with parametrisation $\gamma(t)=\left(t, t, \frac{t^{2}}{2}\right)$.
(i) Is γ an arc-length parametrisation of C ? Justify your answer.
(ii) Find T, N and B for C.
(iii) Compute the curvature κ and the torsion τ of the curve C.

You may assume the Frenet Formulae: $\dot{T}=\kappa N, \dot{N}=-\kappa T+\tau B$ and $\dot{B}=-\tau N$.
[20 marks]
4. Consider the paraboloid P defined by the equation $x^{2}+y^{2}=z$.
(a) Find a parametrisation whose image is all of P (do not prove it is a parametrisation just write it down).
(b) Compute the normal to P oriented to that it points up at $(0,0,0)$.
(c) Compute the Mean and Gaussian curvature of P.
5. (a) (i) Define what the volume form vol_{S} of an n dimensional oriented submanifold S is.
(ii) If $f: S \rightarrow \mathbb{R}$ is a smooth function explain how you would integrate f vol $_{S}$ over the image of an oriented parametrisation $\psi: U \rightarrow S$ where $U \subset \mathbb{R}^{n}$ is open.
(b) Consider the surface T in \mathbb{R}^{3} defined by the equation

$$
\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}
$$

for $0<r<R$.
(i) Sketch this surface, draw a tessellation on it and compute its Euler characteristic.
(ii) If R is the Gaussian curvature of this surface what does the Gauss Bonnet theorem predict that $\frac{1}{2 \pi} \int_{T} R \operatorname{vol}_{T}$ is ? (Don't try and compute this integral.)
[15 marks]

