Geometry of Surface

Introduction

A surface is a special kind of (smooth) subset of \mathbb{R}^3.

Example:

$S^2 = \{ (x, y, z) \mid x^2 + y^2 + z^2 = 1 \}$

or

not smooth:

A surface is an example of a manifold and in particular of a submanifold of \mathbb{R}^3. (\mathbb{R}^3 is also a manifold.)
We want to prove the Gauss-Bonnet Theorem.

It is possible to state this without defining too much so let we do that.

1. Start with curves in \(\mathbb{R}^2 \)

\[\gamma(t), \quad \gamma'(t), \quad \gamma''(t), \quad \gamma'''(t) \]

Define curvature as \(\| \gamma''(t) \| \).

Also radius of circle of "best fit".

2. Now consider \(S \) a surface
\(p \in \Sigma \)
\(\hat{n}_p = \text{unit normal} \)

lead to choice a directa for \(\hat{n}_p \) (called an orientation)

\[T_p \Sigma = \{ v \in \mathbb{R}^3 : \langle v, \hat{n}_p \rangle = 0 \} = (\hat{n}_p)^\perp \]

\[\text{tangent space to } \Sigma \text{ at } p \]

If \(v \in T_p \Sigma \) \(\{ v, \hat{n}_p \} \) span a 2-dim space, and \(\gamma \subset \Sigma \) is a curve, say.

Define \(\tau (v, v) = \text{curvature of } \gamma \)

There is a

Remarkable fact

form \(\tau \) s.t. \(\tau (v, v) = \text{result ason} \)

let \(\lambda_1 = \text{largest curvature} \) \(\lambda_2 = \text{smallest curvature} \)

\[K = \frac{\lambda_1 \lambda_2}{4} = \text{Gaussian curvature} \]
\[H = \frac{1}{2} (\lambda_1 + \lambda_2) = \text{mean curvature} \]

Gauss – Bonnet:

\[\frac{1}{2\pi} \int \int K \, ds = 2 - 2g \]

\# of holes
\(g = 0 \)
\(g = 1 \)
\(g = 2 \)

NB LHS - differential change if we deform surface

RTS - topological doesn't change if we deform surface.

Example of an index theorem - fundamental

Classifying a thm for compact, oriented surface

\[\text{Determined by genus - } 2g - 2 = \text{Euler class} \]

Mean curvature \(H = 0 \) - minimal surface locally has smallest area. "soap bubble"

What is \(\Pi \) ?

Triangle: \(x, y, z \)

\[f(0,0) = 0 \]

\[f_x(0,0) = 0 \]

\[f_y(0,0) = 0 \]

\[f_{xx}(0,0) = 0 \]

\[f_{yy}(0,0) = 0 \]

\[f_{xy}(0,0) = 0 \]

\[f_{xyz}(0,0) = 0 \]

Locally \(\delta \Sigma : z = f(x, y) \)
\[H = \left(\frac{\partial^2 f}{\partial x \partial y} \right) \text{ "Hessian" } \]

We need to go back and develop the definition of submanifolds & tools for solving these problems.

Note: Familiarity with these concepts is also important.

Other kinds of geometry

One way to define a submanifold is to say it is defined by an eq
\[f(x, y, z) = 0 \] where \(f: \mathbb{R}^3 \rightarrow \mathbb{R} \)

is differentiable & \(f'(x, y, z) \neq 0 \) if
\[E.g. \quad f(x, y, z) = x^2 + y^2 + z^2 - 1. \]

Other geometries arise by taking different kinds of functions.

Eg \(f(x, y, z) \) a polynomial.

Then the properties of \(\mathbb{R}^3 \) are important. (More generally \(F[x_1, \ldots, x_n] \) a field \(F \) a field in algebraic geometry (Fields & Geometry) \(F^n \).
§1. Review

Notation
- \(\mathbb{R} \) real numbers
- \(\mathbb{N} = \{1, 2, 3, \ldots \} \) natural numbers
- \(\mathbb{R}^n = \text{n-tuples } x = (x', \ldots, x^n) \) (vectors)

No bold face, underline, arrows etc for vectors

If \(x = (x', \ldots, x^n) \), \(y = (y', \ldots, y^n) \)

\[\langle x, y \rangle = x'y' + \ldots + x^n y^n \] inner product

\[\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{(x')^2 + \ldots + (x^n)^2} \] norm or length of \(x \).

NB \(\| x \| = 0 \iff x = 0 \)

Those satisfy:

\[\langle x, y \rangle \leq \| x \| \| y \| \] Cauchy's

Exercise: \(\exists \gamma \langle x - \langle x', y' \rangle y', x - \langle x', y' \rangle y' \rangle \geq 0 \) inequality
(Square and Cauchy) \(\| x + y \| \leq \| x \| + \| y \| \) \(\Delta \) inequality

\[\text{max} \{ \| x' \|, \ldots, \| x^n \| \} \leq \| x \| \leq \sqrt{n} \text{ max} \{ \| x' \|, \ldots, \| x^n \| \} \]

If \(x \in \mathbb{R}^n, \varepsilon > 0 \)

\[B(x, \varepsilon) = \{ y \in \mathbb{R}^n \mid \| x - y \| < \varepsilon \} \]

\(\frac{1}{\| x \|} = \| x \| \)

\[\| x \| \leq \| x \| \leq \sqrt{n} \text{ max} \{ \| x' \|, \ldots, \| x^n \| \} \]

Exercise

\[B(x, \varepsilon) = (x - \varepsilon, x + \varepsilon) \]
A subset $U \subseteq \mathbb{R}^n$ is called open if

$$\forall x \in U \exists \varepsilon > 0 \text{ s.t. } B(x, \varepsilon) \subseteq U.$$

Note: ε depends on x usually.

A sequence in \mathbb{R}^n is a function $n = \{1, 2, \ldots, y \to \mathbb{R}^n$ usually we write $x = (x_n)_{n \in \mathbb{N}}$ or just x_n.

A sequence $\{x_n\}$ has limit x if $\forall \varepsilon > 0$ \exists N s.t. $\forall n > N$ $\|x_n - x\| \leq \varepsilon$.

Or if $\lim_{n \to \infty} \|x_n - x\| = 0$.

In such a case x is unique & we write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Lemma: If $x_n \to x$ then $\lim_{m,n \to \infty} \|x_m - x_n\| = 0$.

Proof:

$$0 \leq \|x_m - x_n\| = \|x_m - x + x - x_n\| \leq \|x_m - x\| + \|x_n - x\|.$$