Lecture 13

(3) \Rightarrow (4)

For simplicity assume there is no need to permute indices.

Let \(V \) open \(\in \mathbb{R}^n \)

\(s \in V \)

\(\mathcal{S} \cap \bar{V} = \{ (x, g(x)) \mid x \in U \} \quad \text{g} : U \rightarrow \mathbb{R}^{n-1} \)

Let \(f(x) = (x, g(x)) \quad f : U \rightarrow \mathbb{R}^n \)

\(f \) is 1-1, \(f'(x) = (I, g'(x)) \) is 1-1

\& \(f(U) = \{ (x, g(x)) \mid x \in U \} = \mathcal{S} \cap \bar{V} \).

(4) \Rightarrow (1)

Let \(s \in \mathcal{S} \), \(V \) open in \(\mathbb{R}^n \)

containing \(s \).

\(f : U \rightarrow \mathbb{R}^n \), \(f \) 1-1 \(f' \) 1-1

\(f(U) = \mathcal{S} \cap \bar{V} \)

Choose \(x_0 \in U \) s.t. \(f(x_0) = s \).

\(\uparrow f \)

\(x_0 \in U \)
\(\text{imf}'(x_0) \) is n-dim \(\text{la}\) \(f'(x_0) \equiv 1-1\)

\[W = (\text{imf}'(x_0))^\perp \text{ is } N-n \text{ dim } \]

Pick a basis \(w^2, \ldots, w^{N-n} \).

Define \(F : U \times \mathbb{R}^{N-n} \rightarrow \mathbb{R}^N \)

\[F(y, y) = f(x) + \sum_{i=1}^{N-n} w_i y_i \]

\[F(x_0, 0) = f(x_0) = \lambda \]

Let \((\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R}^{N-n} \)

\[F'(x_0, 0)(\alpha, \beta) = f'(x_0)(\alpha) + \sum_{i=1}^{N-n} w_i \beta_i \]

\[\text{imf}'(x_0) \subseteq \text{ imf}'(x_0)^\perp \]

\[\therefore F'(x_0, 0)(\alpha, \beta) = 0 \iff f'(x_0)(\alpha) = 0 \iff \alpha = 0 \]

\[\sum_{i=1}^{N-n} w_i \beta_i = 0 \iff \beta = 0 \]

\[\therefore F'(x_0, 0) \text{ is } 1-1. \text{ Also square so } F'(x_0, 0) \text{ is invertible so locally a diffeo} \]

by \(\text{IFT Th} \).

So \(\exists V \subseteq \text{open } U \times \mathbb{R}^{N-n} \) s.t. \((x_0, 0) \in V \)

s.t. \(F : \tilde{V} \rightarrow F(V) \subseteq \text{open } \mathbb{R}^N \) is a diffeo.
Let \(\bar{V} = F^{-1}(V) \cap \tilde{V} \). Open.

Then \(F : \bar{V} \rightarrow F(\bar{V}) \subseteq \mathbb{R}^n \) is also a cut-off.

Let \(\phi : F(\bar{V}) \rightarrow \bar{V} \) be the inverse of \(F \).

Let \(z \in F(\bar{V}) \cap S \) then

\[z = f(x) = F(x,0) \]

\[\phi(z) = (x,0) \]

Also let \(z \in F(\bar{V}) \) & \(\phi(z) = (x,0) \)

Then \(z = F(x,0) = f(x) \), \(z \in S \).

\[S \cap F(\bar{V}) = \{ z \mid \phi^{k+1}(z) = \ldots = \phi^n(z) \} \]
Hence \(F'(x_0,0) \) is invertible by
\
\[\text{det} F'(x_0,0) \]
\
Let \(\phi \) be a local inverse for \(F \). If \((u, z) \in S \) then
\
\[z = F(x,0) \]
\
If \((x, y) \in S \), \(y = F(x,0) \)
\
\[\phi(x, y) = \phi(x, F(x,0)) = (x, 0) \]
\
\[\phi^{-1}(x, 0) = \ldots = \phi^{-N}(x, 0) = 0 \]
\
\[\phi^{-N}(x, 0) = \ldots = 0 \quad \phi(u) = (x, 0) \quad u = F(x, 0) \in S. \]

Corollary 3.3

If \(U \subseteq \mathbb{R}^n \) and \(F : U \rightarrow \mathbb{R}^{n+m} \) is smooth with \(F(x) \) onto \(\forall x \in S = F^{-1}(0) \) then \(S \) is a submanifold of dimension \(n \).

Defn 3.4 Let \(S \subseteq \mathbb{R}^n \) be a submanifold.

If \(U \subseteq \mathbb{R}^n \), \(U \) open, and \(F : U \rightarrow \mathbb{R}^{n+m} \) smooth \(F(S) \) onto \(\forall S \subseteq U \) \(S \cap U = \emptyset \)

then \(F \) is called a local defining eqs. for \(S \)

Defn 3.5 Let \(S \subseteq \mathbb{R}^n \) be a submanifold. If \(U \subseteq \mathbb{R}^n \) open, \(V \subseteq \mathbb{R}^n \) open and \(f : U \rightarrow V \) is smooth, 1-1, \(f'(x) \) is 1-1 \(\forall x \in U \) \& \(f(U) = V \) \& \(S \) then \(f \) is called a local parameterization of \(S \)

Note: Neither of these are unique

\(\circ \) If \(N=3, n=2 \) \(F : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3 \)

\(F'(0) \) is a submanifold \(\iff f'(x) \neq 0 \ \forall x \in F^{-1}(0) \)
Example $f : U \to \mathbb{R}^{n-m}$ smooth

then $\text{graph}(f) = \{(x, f(x)) \mid x \in U\} \subseteq U \times \mathbb{R}^{n-m}$

is a submanifold of dimension n.

This follows from Theorem 3.2.

Note that we have an implicit representation given by

$$ F(x, y) = y - f(x). $$

& a parametric representation

$$ \phi(x) = (x, f(x)). $$
The task is to revolve around \(z = 0 \) to get a torus.

\[
(x^2 + y^2)^{\frac{1}{2}} - R = z^2 - r^2
\]

Smooth on \(U = \mathbb{R}^3 - \{ z \text{-axis} \} \subset \mathbb{R}^3 \)

\((x, y) = (0, 0)\) open

\[
\frac{\partial F}{\partial x} = 2 \left((x^2 + y^2)^{\frac{1}{2}} - R \right) \frac{1}{2} \cdot \frac{x}{(x^2 + y^2)^{\frac{1}{2}}}
\]

\[
\frac{\partial F}{\partial y} = \left(\frac{1}{(x^2 + y^2)^{\frac{1}{2}}} \right) y
\]

\[
\frac{\partial F}{\partial z} = 2z
\]

Analyze \(\int F(x, y, z) = 0 \) then \(z = 0 \)

\[
F(x, y, z) = 0
\]

\[
(x^2 + y^2)^{\frac{1}{2}} - R = \pm r \neq 0
\]

\[
\frac{\partial F}{\partial x} = 0 = \frac{\partial F}{\partial y} \Rightarrow x = y = z = 0.
\]
Local parametrization

\[(\theta, \phi) \rightarrow (\cos \theta (r + r \cos \phi), \sin \theta (r + r \cos \phi), r \sin \phi)\]

3.1 Tangent space to a submanifold

If \(S\) is a submanifold, an important object associated to every \(s \in S\) is the tangent space at \(s\).

We define it as follows.

Def 3.6 Let \(s \in S\) be a point on a submanifold. Let \(\epsilon > 0\). Then a smooth \(\gamma: (-\epsilon, \epsilon) \rightarrow \mathbb{R}^n\) is called a smooth path on \(S\) through \(s\) if

\[\gamma(0) = s\]

Previously, we denoted by \(\gamma'(0)\) the linear map \(\gamma'(0): \mathbb{R} \rightarrow \mathbb{R}^n\) we call the above notation and also denote the