Geometry of Surfaces 2011

Assignment 5 — Solutions

1 . Notice that if ¥ was defined on all of R® then this would just be the chain rule. But as f is not defined on all
of R® we cannot compute the three partial derivatives of . Instead we recall first from Corollary 2.12 that we
have
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Then we do have a chain rule for functions defined only on submanifolds which is give in Proposition 3.16. It
tells us that 0
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which gives the result.
You could instead extend f to £ defined (locally) on an open set in R2, apply the chain rule and then observe
thatf's v f's v wheneverv2Ts .

2.a 't sint;cost ;0 sothatk °t k 1andhence isan arc-length parametrisation.

(b) We have T t sint:cost: 0. Thus T t cos t; sint ;0. As the parametrisation is by arc-
length we have and T° t has length one we obtain N t cost; sint;0.B T N 0;0;1 . Using
the Frenet formula it follows that 1 and 0.
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Thus B 2t? 2 222 t% 2t (since B is the same as T with the first and third entries swapped and
multiplied by 1) givingB 2=3 t2 2 3 2t;2 t?; 2t 2=3 t2 2 2N and hence
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4. The detailed CBL(:ulations are on the web page but we sketch here the answers. Firstly 0 t 31 t%2t;1 t2
andk “tk 3 21 t2?. So thisis notarc-length parametrised. Then
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Finally
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(a) We have
g— sin R rcos :COS R rcos ;0
and
g— r cos sin ; rsin sin ;r cos
So
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n cos cos :COS sin ;sin
If we evaluate at 0;0 thatis the point r R;0;0 and we get 1;0;0 which is pointing outwards.
(b) Calculating we have
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(c) Then we have
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(d) Hence the principal curvatures are the diagonal entries in
the diagonal entries and the Gaussian curvature is

, the mean curvature H is one half the sum of
cos .
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6. Again the detailed calculations are on the web page. We summarise the results.

(a) P is the graph of the function ¥ x;y x? y? soithas global parametrisation Xx;y
The tangent vectors are
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(b) Calculating gives
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(c) Calculating gives " #
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(d) Using the fact that for any 2 by 2 matrix A the eigenvalues are the roots of t2 tr A t

principal curvatures as
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det A gives the



