Geometry of Surfaces III 2011

Assignment 5.

- Please hand up solutions to the starred questions for marking either in the lecture on Tuesday 18th October or in the Hand-In Box on Level 6 by 5.00 pm on that same day.
- I have included some questions about the second fundamental form which we might not get to until the first week back after the break.

1*. Let $\Sigma \subset \mathbb{R}^3$ be a surface with a parametrisation $\psi: U \to \Sigma$ for some U open in \mathbb{R}^2 . Let $f: \Sigma \to \mathbb{R}$ be a smooth function as defined in Definition 3.10 and discussed in the subsequent Propositions. Recall that if $s \in \Sigma$ then $f'(s): T_s \Sigma \to \mathbb{R}$. Assume $\psi(x) = s$ and show that

$$f'(s)\left(\frac{\partial\psi}{\partial x^i}(x)\right) = \frac{\partial f\circ\psi}{\partial x^i}(x).$$

2. Consider the set

 $C = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \text{ and } x \neq 1\}$

- (a) Assume that $\psi(t) = (\cos(t), \sin(t), 0)$ is parametrisation and show that it is an arc-length parametrisation.
- (b) Find *T*, *N* and *B* on *C* and calculate the curvature and torsion.
- 3*. Consider the curve $\gamma(t) = (t^3, 3t^2, 6t)$. Compute *T*, *N* and *B*. Show that

$$\kappa = \frac{2}{3(t^2+2)^2}$$
 and $\tau = \frac{-2}{3(t^2+2)^2}$.

Remember that if $X: C \to \mathbb{R}^3$ then the arc-length derivative and the derivative in the γ parametrisation are related by

$$\dot{X} = X' \| \gamma' \|^{-1}.$$

It is probably easier to compute *T*, *N* and *B* and then read off κ and τ but you can also use the general formula we have for κ .

4. Consider the curve $\gamma(t) = (3t - t^3, 3t^2, 3t + t^3)$. Compute *T*, *N* and *B* and find κ and τ . See the comments attached to the question above.

5*. Recall the torus $T \subset \mathbb{R}^3$ defined by $F(x, y, z) = (\sqrt{x^2 + y^2} - R)^2 + z^2 - r^2 = 0$ for 0 < r < R and with parameters: $\chi(\theta, \phi) = (\cos(\theta)(R + r\cos(\phi)), \sin(\theta)(R + r\cos(\phi)), r\sin(\phi)).$

- (a) Compute the *outward* unit normal $n = \hat{n}$. To make sure it is the outward normal check the value at some point.
- (b) Calculate the second fundamental form α .
- (c) Compute the map Π given by $\Pi = -n'$. That is

$$\Pi(\frac{\partial \chi}{\partial \theta}) = -\frac{\partial n}{\partial \theta} \quad \text{and} \quad \Pi(\frac{\partial \chi}{\partial \phi}) = -\frac{\partial n}{\partial \phi}$$

- (d) Find the principal curvatures, the mean curvature and the Gaussian curvature.
- 6. Consider the paraboloid $P \subseteq \mathbb{R}^3$ defined by $z = x^2 + y^2$.
- (a) Calculate the unit normal n oriented so that at (0, 0, 0) it is (0, 0, 1).
- (b) Calculate the second fundamental form α .
- (c) Compute the map Π given by $\Pi = -n'$.
- (d) Find the principal curvatures, the mean curvature and the Gaussian curvature.