## Geometry of Surfaces III 2011

## Assignment 5.

- Please hand up solutions to the starred questions for marking either in the lecture on Tuesday 18th October or in the Hand-In Box on Level 6 by 5.00 pm on that same day.
- I have included some questions about the second fundamental form which we might not get to until the first week back after the break.
$1^{*}$. Let $\Sigma \subset \mathbb{R}^{3}$ be a surface with a parametrisation $\psi: U \rightarrow \Sigma$ for some $U$ open in $\mathbb{R}^{2}$. Let $f: \Sigma \rightarrow \mathbb{R}$ be a smooth function as defined in Definition 3.10 and discussed in the subsequent Propositions. Recall that if $s \in \Sigma$ then $f^{\prime}(s): T_{s} \Sigma \rightarrow \mathbb{R}$. Assume $\psi(x)=s$ and show that

$$
f^{\prime}(s)\left(\frac{\partial \psi}{\partial x^{i}}(x)\right)=\frac{\partial f \circ \psi}{\partial x^{i}}(x)
$$

2. Consider the set

$$
C=\left\{(x, y, 0) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1 \quad \text { and } \quad x \neq 1\right\}
$$

(a) Assume that $\psi(t)=(\cos (t), \sin (t), 0)$ is parametrisation and show that it is an arc-length parametrisation.
(b) Find $T, N$ and $B$ on $C$ and calculate the curvature and torsion.

3*. Consider the curve $\gamma(t)=\left(t^{3}, 3 t^{2}, 6 t\right)$. Compute $T, N$ and $B$. Show that

$$
\kappa=\frac{2}{3\left(t^{2}+2\right)^{2}} \quad \text { and } \quad \tau=\frac{-2}{3\left(t^{2}+2\right)^{2}} .
$$

Remember that if $X: C \rightarrow \mathbb{R}^{3}$ then the arc-length derivative and the derivative in the $\gamma$ parametrisation are related by

$$
\dot{X}=X^{\prime}\left\|\gamma^{\prime}\right\|^{-1} .
$$

It is probably easier to compute $T, N$ and $B$ and then read off $\kappa$ and $\tau$ but you can also use the general formula we have for $\kappa$.
4. Consider the curve $\gamma(t)=\left(3 t-t^{3}, 3 t^{2}, 3 t+t^{3}\right)$. Compute $T, N$ and $B$ and find $\kappa$ and $\tau$. See the comments attached to the question above.

5*. Recall the torus $T \subset \mathbb{R}^{3}$ defined by $F(x, y, z)=\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}-r^{2}=0$ for $0<r<R$ and with parameters:

$$
\chi(\theta, \phi)=(\cos (\theta)(R+r \cos (\phi)), \sin (\theta)(R+r \cos (\phi)), r \sin (\phi)) .
$$

(a) Compute the outward unit normal $n=\hat{n}$. To make sure it is the outward normal check the value at some point.
(b) Calculate the second fundamental form $\alpha$.
(c) Compute the map $\Pi$ given by $\Pi=-n^{\prime}$. That is

$$
\Pi\left(\frac{\partial \chi}{\partial \theta}\right)=-\frac{\partial n}{\partial \theta} \quad \text { and } \quad \Pi\left(\frac{\partial \chi}{\partial \phi}\right)=-\frac{\partial n}{\partial \phi}
$$

(d) Find the principal curvatures, the mean curvature and the Gaussian curvature.
6. Consider the paraboloid $P \subseteq \mathbb{R}^{3}$ defined by $z=x^{2}+y^{2}$.
(a) Calculate the unit normal $n$ oriented so that at $(0,0,0)$ it is $(0,0,1)$.
(b) Calculate the second fundamental form $\alpha$.
(c) Compute the map $\Pi$ given by $\Pi=-n^{\prime}$.
(d) Find the principal curvatures, the mean curvature and the Gaussian curvature.

