Geometry of Surfaces 2011

Assignment 4 - Solutions

1. We have $G_{t}^{\prime}(x, y, z)=(2 x, 2 y,-2 z)$. This is onto as a linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}$ if and only if it is not zero. It is only zero when $(x, y, z)=(0,0,0)$. This point is on $G_{t}^{-1}(0)$ only when $0^{2}+0^{2}-0^{2}-t=0$ i.e. when $t=0$. Hence G_{t} is the defining equation of a submanifold if $t \neq 0$ and is not the defining equation of a submanifold if $t=0$. In the former case $Z_{t}=G_{t}^{-1}(0)$ has dimension $3-1=0$. Two cases are:

Figure 0.1: $t=2$

Figure 0.2: $t=0$
2.
(a) We have $F^{\prime}(x, y, z)=(2 x, 2 y, 0)$. This equals zero only when $x=0$ and $y=0$. But $F(0,0, z)=-1 \neq 0$ so that $(x, y, 0) \notin F^{-1}(0)$. Hence $C=F^{-1}(0)$ is a submanifold of \mathbb{R}^{3}. It has dimension $3-1=2$.
(b) Standard facts about cos and \sin tell us that ψ is one to one. Also

$$
\psi^{\prime}(\theta, t)=\left(\begin{array}{cc}
-\sin (\theta) & 0 \\
\cos (\theta) & 0 \\
0 & 1
\end{array}\right)
$$

The columns are linearly independent unless $\sin (\theta)=\cos (\theta)=0$ which is not possible. Hence $\psi(\theta, t)$ is one to one. Every point in C is in the image of θ except for those of the form $(1,0, z)$ for $z \in \mathbb{R}$.
(c) From (b) we have

$$
\frac{\partial \psi}{\partial \theta}=\left(\begin{array}{c}
-\sin (\theta) \\
\cos (\theta) \\
0
\end{array}\right) \quad \text { and } \quad \frac{\partial \psi}{\partial t}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

So that

$$
\frac{\partial \psi}{\partial \theta}(\pi, 1)=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) \quad \text { and } \quad \frac{\partial \psi}{\partial t}(\pi, 1)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Thus the tangent space at $\psi(\pi, 1)$ is the span of these two vectors or the $Y-Z$ plane.

3*. As F_{t} has polynomial entries it is clearly smooth. Consider the derivative of F_{t} which is $F_{t}^{\prime}(x, y, z)(a, b, c)=$ $a(2 x, 2 x)+b(0,2 y)+c(2 z, 0)$. At a point where $F_{t}(x, y, z)=0$ we have that $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=t$. If $x=0$ then y and z non-zero and $F_{t}^{\prime}(x, y, z)$ is onto as $(0,2 y)$ and $(2 z, 0)$ are linearly independent. So assume that $x \neq 0$. In that case as long as one of x or y is non-zero $F_{t}^{\prime}(x, y, z)$ is onto. So assume that $y=z=0$ and $x \neq 0$. Then $x^{2}=1$ and $x^{2}=t$ so that $t=1$. In that case $F_{1}(x, 0,0)(a, b, c)=a(2 x, 2 x)$ is not onto. So F_{t} is certainly a defining equation if and only if $t \neq 0$.

The set Z_{t} is the intersection of a cylinder of radius 1 with a cylinder of radius t where the cylinders are at right angles to each other. For $t \neq 1$ the cylinders intersect in two disjoint circles. For $t=1$ they intersect in two circles which themselves intersect in two points.

For $t \neq 1 Z_{t}$ is a one-dimensional submanifold because the dimension of the kernel of F_{t}^{\prime} is one-dimensional or because Z_{t} is defined as the zero set of $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $3-2=1$.

Figure 0.3: $t=2$

Figure 0.4: $t=1$
4^{*}.
(a) The derivatives of χ are

$$
\frac{\partial \chi}{\partial \theta}=(-\sin (\theta)(R+r \cos (\phi)), \cos (\theta)(R+r \cos (\phi)), 0)
$$

and

$$
\frac{\partial \chi}{\partial \phi}=(-r \cos (\theta) \sin (\phi),-r \sin (\theta) \sin (\phi), r \cos (\phi))
$$

and it is one to one if and only if these two vectors are linearly independent i.e. are not multiples of each other. Notice that we have

$$
\left\langle\frac{\partial \chi}{\partial \theta}, \frac{\partial \chi}{\partial \phi}\right\rangle=0, \quad\left\|\frac{\partial \chi}{\partial \theta}\right\|^{2}=(R+r \cos (\theta))^{2}>0 \quad \text { and } \quad\left\|\frac{\partial \chi}{\partial \phi}\right\|^{2}=r^{2}>0
$$

as $R>r>0$. Hence neither vector is zero and neither is a multiple of the other. So they are linearly independent. Hence χ is a parametrisation.
(b) Rather than sketch let me describe the set not in the image of χ. If $\theta=0$ we get $\{(R+r \cos (\phi), 0, r \sin (\phi)) \mid$ $\phi \in[0,2 \pi]\}$ that is a circle in the $X-Z$ plane centered at $(R, 0,0)$ of radius r. If $\phi=0$ then it is $\{((R+r) \cos (\theta),(R+r) \sin (\theta), 0) \mid \theta \in[0,2 \pi]\}$ that is a circle in the $X-Y$ plane centered at the origin of radius $R+r$. These intersect at $(R+r, 0,0)$.
$\chi(\pi, \pi)=((-1)(R-r), 0,0)=(r-R, 0,0)$ and $\chi(\pi / 2,3 \pi / 2)=(0,1(R+0), r(-1))=(0, R,-r)$.
(c) $\frac{\partial X}{\partial \theta}(\pi, \pi)=(0, r-R, 0), \frac{\partial X}{\partial \phi}(\pi, \pi)=(0,0,-r)$ and the tangent space at $(r-R, 0,0)$ is the $y-z$ plane. $\frac{\partial X}{\partial \theta}(\pi / 2,3 \pi / 2)=(-R, 0,0), \frac{\partial x}{\partial \phi}(\pi / 2,3 \pi / 2)=(0, r, 0)$ so the tangent space at $(0, R,-r)$ is the $x-y$ plane.

5*.
(a) Define $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $F(x, y, z)=x^{2}-y^{2}-z$. Then $F^{\prime}(x, y, z)=(2 x,-2 y, 1)$ which never vanishes. So $S=F^{-1}(0)$ is a submanifold.
(b)
(c) We can parametrise S by $\psi(x, y)=\left(x, y, x^{2}-y^{2}\right)$ and then

$$
\frac{\partial \psi}{\partial x}=(1,0,2 x) \quad \text { and } \quad \frac{\partial \psi}{\partial y}=(1,0,-2 y)
$$

and the tangent space is the span of these vectors.
(d) A general point has the form $\left(x, y, x^{2}-y^{2}\right)+\alpha(1,0,2 x)+\beta(1,0,-2 y)$ and applying F gives $\alpha^{2}-\beta^{2}=0$. So this in S if and only if $\alpha= \pm \beta$. In each of these cases the whole line is in S.

(a) Let $F(x, y, z)=x^{2}+y^{2}-z^{2}-1$. We have $F^{\prime}(x, y, z)=(2 x, 2 y,-2 z)$. This is zero if and only if $x=y=z=0$ which is not on the curve.
(b)
(c) From $F^{\prime}(x, y, z)$ we see that the tangent space is all ($\left.\alpha, \beta, \gamma\right)$ such that $x \alpha+y \beta-z \gamma=0$.
(d) Have a look at the hand written solutions I emailed around after the tutorial which are on the web page as well.
$7^{\#}$.
(a) Let B be a symmetric matrix and note that $X X^{t}=1$. Then $B=(1 / 2) B+(1 / 2) B^{t}=(1 / 2) B X X^{t}+(1 / 2) X X^{t} B^{t}=$ $((1 / 2) B X) X^{t}+X((1 / 2) B X)^{t}$ so $\chi(A)=B$ if $A=(1 / 2) B X$. Hence χ is onto.
(b) Examination of the entries of $F(X)$ shows that they are polynomial in the entries of X and hence F is a smooth function. Notice that $F(X)^{t}=\left(X X^{t}\right)^{t}-I^{t}=X X^{t}-I=F(X)$ so that F has image in S_{n}.
(c) Notice that you cannot just launch off and compute you have to say that F is differentiable so therefore $F^{\prime}(X)(A)$ is obtained by differentiating $\left.F(X+t A)=X X^{t}+t\left(A X^{t}+X A^{t}\right)+t^{2} A A^{t}\right)$. This gives $F^{\prime}(X)(A)=$ $A X^{t}+X A^{t}$.
(d) $F^{\prime}(X)$ is onto S_{n} for all $X \in F^{-1}(0)=O_{n}$. Hence O_{n} is a submanifold. Its dimension is $n^{2}-\operatorname{dim}\left(S_{n}\right)=$ $n^{2}-n(n+1) / 2=(1 / 2) n(n-1)$.
(e) $T_{1} O_{n}=\operatorname{ker} F(1)=\left\{A \mid A^{t}+A=0\right\}$. This is the set of all skew-symmetric matrices.

