Geometry of Surfaces 2011

Assignment 3 - Solutions

1.

(a)

$$
g \circ f\left(x^{1}, x^{2}\right)=\left(x^{1} x^{2},\left(x^{2}\right)^{3} x^{1} \sin \left(x^{1}\right), \exp \left(\left(x^{2}\right)^{2} \sin \left(x^{1}\right)\right)\right)
$$

(b)

$$
\begin{aligned}
f^{\prime}\left(x^{1}, x^{2}\right) & =\left(\begin{array}{ll}
\left(x^{2}\right)^{2} \cos \left(x^{1}\right) & 2 x^{2} \sin \left(x^{1}\right) \\
x^{2} & x^{1}
\end{array}\right) \\
g^{\prime}\left(x^{1}, x^{2}\right) & =\left(\begin{array}{ll}
0 & 1 \\
x^{2} & x^{1} \\
\exp \left(x^{1}\right) & 0
\end{array}\right) \\
(g \circ f)^{\prime}\left(x^{1}, x^{2}\right) & =\left(\begin{array}{ll}
x^{2} & x^{1} \\
\left(x^{2}\right)^{3}\left(\sin \left(x^{1}\right)+x^{1} \cos \left(x^{1}\right)\right) & 3\left(x^{2}\right)^{2} x^{1} \sin \left(x^{1}\right) \\
\left(x^{2}\right)^{2} \cos \left(x^{1}\right) \exp \left(\left(x^{2}\right)^{2} \sin \left(x^{1}\right)\right) & 2 x^{2} \sin \left(x^{1}\right) \exp \left(\left(x^{2}\right)^{2} \sin \left(x^{1}\right)\right)
\end{array}\right)
\end{aligned}
$$

You have $f^{\prime}\left(x^{1}, x^{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g^{\prime}\left(x^{1}, x^{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $(g \circ f)^{\prime}\left(x^{1}, x^{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.
(c) You just need to calculate the product $g^{\prime}\left(f\left(x^{1}, x^{2}\right)\right) f^{\prime}\left(x^{1}, x^{2}\right)$ and verify the result.

2*.
(a)

$$
g \circ f\left(x^{1}, x^{2}, x^{3}\right)=\left(x^{2} x^{3},\left(x^{1}\right)^{2}\left(x^{2} \exp \left(x^{2}\right)\right) x^{3}\right)
$$

(b)

$$
\begin{aligned}
f^{\prime}\left(x^{1}, x^{2}, x^{3}\right) & =\left(\begin{array}{lll}
2 x^{1} \exp \left(x^{2}\right) & \left(x^{1}\right)^{2} \exp \left(x^{2}\right) & 0 \\
0 & x^{3} & x^{2}
\end{array}\right) \\
g^{\prime}\left(x^{1}, x^{2}\right) & =\left(\begin{array}{ll}
0 & 1 \\
x^{2} & x^{1}
\end{array}\right) \\
(g \circ f)^{\prime}\left(x^{1}, x^{2}, X^{3}\right) & =\left(\begin{array}{lll}
0 & x^{3} \\
2 x^{1} x^{2} x^{3} \exp \left(x^{2}\right) & \left(x^{1}\right)^{2}\left(x^{3}\right)\left(x^{2} \exp \left(x^{2}\right)+\exp \left(x^{2}\right)\right) & \left(x^{1}\right)^{2} x^{2} \exp \left(x^{2}\right)
\end{array}\right)
\end{aligned}
$$

You have $f^{\prime}\left(x^{1}, x^{2}, x^{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, g^{\prime}\left(x^{1}, x^{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $(g \circ f)^{\prime}\left(x^{1}, x^{2}, x^{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.
(c) You just need to calculate the product $g^{\prime}\left(f\left(x^{1}, x^{2}\right)\right) f^{\prime}\left(x^{1}, x^{2}\right)$ and verify the result.

3*.
(a) We have

$$
f^{\prime}\left(x^{1}, x^{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
\left(x^{2}\right)^{2} & 2 x^{1} x^{2}
\end{array}\right)
$$

so that $\operatorname{det}\left(f^{\prime}\left(x^{1}, x^{2}\right)\right)=2 x^{1} x^{2}$. Hence $f^{\prime}\left(x^{1}, x^{2}\right)$ is invertible unless $x^{1}=0$ or $x^{2}=0$.
(b) $f^{\prime}(1,1)=2 \neq 0$ so $f^{\prime}(1,1)$ is invertible. It follows from the Inverse Function Theorem that there is an open set $U \subset \mathbb{R}^{2}$ containing $(1,1)$ such that $f(U) \subset \mathbb{R}^{2}$ is open and $f_{\mid U}: U \rightarrow f(U)$ is a diffeomorphism.
(c) f is not one to one as $f(1,1)=(1,1)=f(1,-1) . f$ is not onto as you cannot solve $(1,-1)=\left(x_{1}, x_{1}\left(x^{2}\right)^{2}\right)=$ $f\left(x^{1}, x^{2}\right)$ as it is equivalent to $x^{1}=1$ and $\left(x^{2}\right)^{2}=-1$.
4.
(a) We have

$$
f^{\prime}\left(x^{1}, x^{2}, x^{3}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
x^{3} & 0 & x^{1} \\
1 & x^{3} & x^{2}
\end{array}\right)
$$

so that $\operatorname{det}\left(f^{\prime}\left(x^{1}, x^{2}, x^{3}\right)=-x^{3} x^{1}\right.$ and hence $f^{\prime}\left(x^{1}, x^{2}, x^{3}\right)$ is invertible unless $x^{1}=0$ or $x^{2}=0$.
(b) $f^{\prime}(1,1,1)=2-1 \neq 0$ so $f^{\prime}(1,1,1)$ is invertible. It follows from the Inverse Function Theorem that there is an open set $U \subset \mathbb{R}^{3}$ containing $(1,1,1)$ such that $f(U) \subset \mathbb{R}^{3}$ is open and $f_{\mid U}: U \rightarrow f(U)$ is a diffeomorphism.
(c) f is not one to one as $f(0,-1,-1)=(0,0,1)=f(0,1,1) . f$ is not onto as cannot solve $\left(x^{1}, x^{1} x^{3}, x^{1}+\right.$ $\left.x^{2} x^{3}\right)=(0,1,0)$.
5. Let $x \in \tilde{U}$ then $(x, 0) \in U$ which is open so $\exists \epsilon>0$ such that $B_{\mathbb{R}^{n+m}}((x, 0), \epsilon) \subset U$. Let $y \in B_{\mathbb{R}^{n}}(x, \epsilon)$ then $\|(x, 0)-(y, 0)\|_{\mathbb{R}^{n+m}}=\|x-y\|_{\mathbb{R}^{n}}<\epsilon$ so that $(y, 0) \in B_{\mathbb{R}^{n+m}}((x, 0), \epsilon) \subset U$. Hence $(y, 0) \in \tilde{U}$ so that $B_{\mathbb{R}^{n}}(x, \epsilon) \subset \tilde{U}$ and hence \tilde{U} is open.

6*.
(a) Notice first that each $L\left(e^{i}\right)$ is in the image of L. Then let $y \in\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}$. Then $y=L(x)$ for some $x \in \mathbb{R}^{n}$. But $x=\sum_{i=1}^{n} x^{i} e^{i}$ and hence

$$
y=L(x)=L\left(\sum_{i=1}^{n} x^{i} e^{i}\right)=\sum_{i=1}^{n} x^{i} L\left(e^{i}\right)
$$

because L is linear. Thus the $L\left(e^{i}\right)$ span $\operatorname{im}(L)$.
(b) (\Leftrightarrow) Assume the kernel of L is zero. If we have $\sum_{i=1}^{n} x^{i}\left(e^{i}\right)=0$ then $L\left(\sum_{i=1}^{n} x^{i} e^{i}\right)=0$ so that $\sum_{i=1}^{n} x^{i} e^{i}=0$. But the e^{i} are a basis so $x^{1}=x^{2}=\cdots=x^{n}=0$. Hence the $L\left(e^{i}\right)$ are a linearly independent. We already know from (a) that they span $\operatorname{im}(L)$ so they must be a basis. (\Rightarrow). Assume the $L\left(e^{i}\right)$ are a basis so they are linearly independent. Let $L(x)=0$. Then $x=\sum_{i=1}^{n} x^{i} e^{i}$ so that $0=L(x)=\sum_{i=1}^{n} x^{i} L\left(e^{i}\right)$. But the $L\left(e^{i}\right)$ are linearly independent so $x^{1}=x^{2}=\ldots x^{n}=0$ hence $x=\sum_{i=1}^{n} s x^{i} e^{i}=0$. So $\operatorname{ker}(L)=0$.
7.
(a) Let $\gamma(t)=\left(\gamma^{1}(t), \gamma^{2}(t)\right.$ and notice that $\gamma^{2}(t)=t \gamma^{1}(t)$. So if $\gamma(s)=\gamma(t)$ then $t \gamma^{1}(t)=s \gamma^{1}(t)$. If $\gamma^{1}(t)=0$ then $\gamma^{1}(s)=0$ and hence $s=t=0$. If $\gamma^{1}(t) \neq 0$ then $t=s$. So γ is one to one.
(b) $\gamma^{\prime}(t): \mathbb{R} \rightarrow \mathbb{R}^{2}$ is one to one unless it is zero when it is not one to one. But

$$
\gamma^{\prime}(t)=\left(\frac{4 t}{\left(1+t^{2}\right)^{2}}, \frac{-t^{3}+6 t^{2}}{\left(1+t^{2}\right)^{2}}\right)
$$

which is zero only if $t=0$. Hence the only point is $t=0$.
(c)

8*.
(a) As $\gamma^{3}(t)=t$ clearly γ is one to one because if $\gamma(t)=\gamma(s)$ then $\gamma^{3}(t)=\gamma^{3}(s)$ so that $t=s$.
(b) $\gamma^{\prime}(t): \mathbb{R} \rightarrow \mathbb{R}^{3}$ is one to one unless it is zero when it is not one to one. But

$$
\gamma^{\prime}(t)=(\cos (t),-\sin (t), 1)
$$

is never zero so there are no points at which $\gamma^{\prime}(t)$ is not one to one.

(c)

