Geometry of Surfaces 2011

Assignment 2 - Solutions

1^{*}. We have $f(x, y, z)=\left(x y, y^{2}+z\right)$. Let $h=(\alpha, \beta, \gamma)$ then

$$
\begin{aligned}
f(1+\alpha, 1+\beta, \gamma) & =\left((1+\alpha)(1+\beta),(1+\beta)^{2}+\gamma\right) \\
& =f(1,1,0)+(\alpha+\beta, 2 \beta+\gamma)+\left(\alpha \beta, \beta^{2}\right)
\end{aligned}
$$

Define $f^{\prime}(1,1,0)(\alpha, \beta, \gamma)=(\alpha+\beta, 2 \beta+\gamma)$ and note that it is linear. Then

$$
\begin{aligned}
0 \leq \frac{\left\|f(1+\alpha, 1+\beta, \gamma)-f(1,1,0)-f^{\prime}(1,1,0)(\alpha, \beta, \gamma)\right\|}{\|h\|} & =\sqrt{\frac{\alpha^{2} \beta^{2}+\beta^{4}}{\alpha^{2}+\beta^{2}+\gamma^{2}}} \\
& \leq \sqrt{\frac{\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)^{2}}{\alpha^{2}+\beta^{2}+\gamma^{2}}} \\
& \leq\|h\|
\end{aligned}
$$

which $\rightarrow 0$ as $\|h\| \rightarrow 0$ so the derivative exists and is the linear map $f^{\prime}(1,1,0)(\alpha, \beta, \gamma)=(\alpha+\beta, 2 \beta+\gamma)$. As a matrix this is

$$
f^{\prime}(1,1,0)(\alpha, \beta, \gamma)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

which agrees with the Jacobian matrix of partial derivatives

$$
\left(\begin{array}{lll}
\frac{\partial f^{1}}{\partial x} & \frac{\partial f^{1}}{\partial y} & \frac{\partial f^{1}}{\partial z} \\
\frac{\partial f^{2}}{\partial x} & \frac{\partial f^{2}}{\partial y} & \frac{\partial f^{2}}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
y & x & 0 \\
0 & 2 y & 1
\end{array}\right)
$$

evaluated at $(x, y, z)=(1,1,0)$.
2. We have $f(x, y, z)=\left(x+y^{2}, y z\right)$. Let $h=(\alpha, \beta, \gamma)$ then

$$
\begin{aligned}
f(1+\alpha, 1+\beta, 1+\gamma) & =\left((1+\alpha)+(1+\beta)^{2},(1+\beta)(1+\gamma)\right. \\
& =f(1,1,1)+(\alpha+2 \beta, \beta+\gamma)+\left(\beta^{2}, \gamma \beta\right)
\end{aligned}
$$

Define $f^{\prime}(1,1,1)(\alpha, \beta, \gamma)=(\alpha+2 \beta, \beta+\gamma)$ and note that it is linear. Then

$$
\begin{aligned}
0 \leq \frac{\left\|f(1+\alpha, 1+\beta, 1+\gamma)-f(1,1,1)-f^{\prime}(1,1,1)(\alpha, \beta, \gamma)\right\|}{\|h\|} & =\sqrt{\frac{\beta^{4}+\beta^{2} \gamma^{2}}{\alpha^{2}+\beta^{2}+\gamma^{2}}} \\
& \leq \sqrt{\frac{\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)^{2}}{\alpha^{2}+\beta^{2}+\gamma^{2}}} \\
& \leq\|h\|
\end{aligned}
$$

which $\rightarrow 0$ as $\|h\| \rightarrow 0$ so the derivative exists and is the linear map $f^{\prime}(1,1,1)(\alpha, \beta, \gamma)=(\alpha+2 \beta, \beta+\gamma)$. As a matrix this is

$$
f^{\prime}(1,1,1)(\alpha, \beta, \gamma)=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

which agrees with the Jacobian matrix of partial derivatives

$$
\left(\begin{array}{lll}
\frac{\partial f^{1}}{\partial x} & \frac{\partial f^{1}}{\partial y} & \frac{\partial f^{1}}{\partial z} \\
\frac{\partial f^{2}}{\partial x} & \frac{\partial f^{2}}{\partial y} & \frac{\partial f^{2}}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 y & 0 \\
0 & z & y
\end{array}\right)
$$

evaluated at $(x, y, z)=(1,1,1)$.
3. From first principles we have

$$
F(a+h)-F(a)=\|a+h\|^{2}-\|a\|^{2}=\|a\|^{2}+2\langle a, h\rangle+\|h\|^{2}-\|a\|^{2}=2\langle a, h\rangle+\|h\|^{2} .
$$

So let $F^{\prime}(a)$ be the linear map $F^{\prime}(a)(h)=2\langle a, h\rangle$. Then

$$
0 \leq \frac{\left|F(a+h)-F(a)-F^{\prime}(a)(h)\right|}{\|h\|}=\|h\|
$$

which $\rightarrow 0$ as $\|h\| \rightarrow 0$. So F is differentiable at a and $F^{\prime}(a)(h)=2\langle a, h\rangle$.
The alternative approach is to note that $F(x)=\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}$ so that $\partial F / \partial x^{i}(a)=2 a^{i}$. Clearly the partial derivatives exist and are continuous for all $a \in \mathbb{R}^{n}$ so from Proposition $2.14 F$ is differentiable at all a and the Jacobian matrix $J(F)(a)$ applied to h is $2 a^{1} h^{1}+\cdots+2 a^{n} h^{n}=2\langle a, h\rangle$ so $F^{\prime}(a)(h)=2\langle a, h\rangle$.

4*. Notice that $\phi=F \circ f$ where F is defined in the previous question. Also from that same question F is differentiable everywhere. So by the Chain Rule ϕ is differentiable everywhere. Moreover $\phi^{\prime}(a)=F^{\prime}(f(a))$ 。 $f^{\prime}(a)$ thus $\phi^{\prime}(a)(h)=F^{\prime}(f(a))\left(f^{\prime}(a)\right)=2\left\langle f(a), f^{\prime}(a)(h)\right\rangle$.

5*. We have

$$
f(a+h)-f(a)-f^{\prime}(a)(h)=L(a+h)+v-(L(a)+v)-L(h)=L(a)+L(h)+v-L(a)-v-L(h)=0
$$

Thus

$$
\lim _{h \rightarrow 0} \frac{\left\|f(a+h)-f(a)-f^{\prime}(a)(h)\right\|}{\|h\|}=\lim _{h \rightarrow 0} \frac{0}{\|h\|}=0
$$

so the derivative exists.
6. Note that f differs from F in question 3 by a constant so that $f^{\prime}(w)(h)=F^{\prime}(w)(h)=2\langle w, h\rangle$. If $w=0$ then $f^{\prime}(w)(h)=2\langle 0, h\rangle=0$ so $f^{\prime}(0): \mathbb{R}^{3} \rightarrow \mathbb{R}$ is not onto. Conversely if $w \neq 0$ then $f^{\prime}(w)(\lambda w)=2 \lambda\|w\|^{2} \neq 0$. Hence if $\rho \in \mathbb{R}$ we can choose λ so that $2 \lambda\|w\|^{2}=\rho$ so that $f^{\prime}(w)(\lambda w)=\rho$ and thus $f^{\prime}(w)$ is onto. The result about the kernel follows from the definition of $f^{\prime}(w)$. That is $f^{\prime}(w)(v)=0$ if and only if $\langle w, v\rangle=0$.
7. The first part is a straightforward calculation:

$$
\left(\frac{2 x^{1}}{1+\|x\|^{2}}\right)^{2}+\left(\frac{2 x^{2}}{1+\|x\|^{2}}\right)^{2}+\left(\frac{1-\|x\|^{2}}{1+\|x\|^{2}}\right)^{2}=\frac{4\|x\|^{2}+1-2\|x\|^{2}+\|x\|^{4}}{\left(1+\|x\|^{2}\right)^{2}}=\frac{\left(1+\|x\|^{2}\right)^{2}}{\left(1+\|x\|^{2}\right)^{2}}=1
$$

The Jacobian matrix is

$$
J(\phi)(x)=\frac{1}{\left(1+\|x\|^{2}\right)^{2}}\left(\begin{array}{cc}
2+2\left(x^{2}\right)^{2}-2\left(x^{1}\right)^{2} & -4 x^{1} x^{2} \\
-4 x^{1} x^{2} & 2+2\left(x^{1}\right)^{2}-2\left(x^{2}\right)^{2} \\
-4 x^{1} & -4 x^{2}
\end{array}\right)
$$

Clearly the partial derivatives exist and are continuous so that ϕ is C^{1}. Hence ϕ is differentiable and the derivative $\phi^{\prime}(x)$ is given by multiplication by the Jacobian matrix.

Notice that $\operatorname{im}\left(\phi^{\prime}(x)\right)$ is the span of the columns of $J(\phi)(x)$. Hence it is at most 2 -dimensional. If the first column is zero for some x^{1} and x^{2} then $x^{1}=0$ and $2+2\left(x^{2}\right)^{2}=0$ which is not possible. Similarly for the second column. So both columns are always non-zero. A calculation shows that the columns are orthogonal. It follows that the columns are linearly independent and thus form a basis for $\operatorname{im}\left(\phi^{\prime}(x)\right)$. Hence $\operatorname{im}\left(\phi^{\prime}(x)\right)$ is 2-dimensional.

Another calculation shows that $\left\langle\phi(x), \phi^{\prime}(x)(h)\right\rangle=0$ for all h. Hence $\operatorname{im}\left(\phi^{\prime}(x)\right) \subset \phi(x)^{\perp}$. Alternatively notice that $G(x)=\|\phi(x)\|^{2}=1$ for all x so by the Chain Rule and question 4 we see that $0=G^{\prime}(x)(h)=$ $2\left\langle\phi(x), \phi^{\prime}(x)(h)\right\rangle$ for all h. But $\|\phi(x)\|=1$ so $\phi(x) \neq 0$ and thus $\operatorname{dim} \phi(x)^{\perp}=2$. Hence $\operatorname{im}\left(\phi^{\prime}(x)\right)=\phi(x)^{\perp}$.
8^{*}. The first part is a straightforward calculation that

$$
\left(\cos \left(x^{1}\right) \sin \left(x^{2}\right)\right)^{2}+\left(\sin \left(x^{1}\right) \sin \left(x^{2}\right)\right)^{2}+\left(\cos \left(x^{2}\right)\right)^{2}=1
$$

The Jacobian matrix is

$$
J(\phi)(x)=\left(\begin{array}{cc}
-\sin \left(x^{1}\right) \sin \left(x^{2}\right) & \cos \left(x^{1}\right) \cos \left(x^{2}\right) \\
\cos \left(x^{1}\right) \sin \left(x^{2}\right) & \sin \left(x^{1}\right) \cos \left(x^{2}\right) \\
0 & -\sin \left(x^{2}\right)
\end{array}\right)
$$

Clearly the partial derivatives exist and are continuous so that ϕ is C^{1}. Hence ϕ is differentiable and the derivative $\phi^{\prime}(x)$ is given by multiplication by the Jacobian matrix.

Notice that $\operatorname{im}\left(\phi^{\prime}(x)\right)$ is the span of the columns of $J(\phi)(x)$. Hence it is at most 2-dimensional. The norm of the first column is $\sin ^{2}\left(x^{2}\right)$ which cannot vanish for $x^{2} \in(0, \pi)$ so that the first column is never zero. The norm of the length of the second column is 1 so it cannot vanish either. So both columns are always non-zero. A calculation shows that the columns are orthogonal. It follows that the columns are linearly independent and thus form a basis for $\operatorname{im}\left(\phi^{\prime}(x)\right)$. Hence $\operatorname{im}\left(\phi^{\prime}(x)\right)$ is 2-dimensional.

Another calculation shows that $\left\langle\phi(x), \phi^{\prime}(x)(h)\right\rangle=0$ for all h. Hence $\operatorname{im}\left(\phi^{\prime}(x)\right) \subset \phi(x)^{\perp}$. Again this can be done by the chain rule as well. But $\|\phi(x)\|=1$ so $\phi(x) \neq 0$ and thus $\operatorname{dim} \phi(x)^{\perp}=2$. Hence $\operatorname{im}\left(\phi^{\prime}(x)\right)=\phi(x)^{\perp}$.

9*. First notice that f is continuous on all of \mathbb{R} except possibly at zero. At zero we have $\lim _{x \rightarrow 0} f(x)=0$ as $\sin (1 / x)$ is bounded and $x^{2} \rightarrow 0$ as $x \rightarrow 0$. Hence f is continuous or C^{0} on all of \mathbb{R}. Clearly f is differentiable away from zero and the derivative is

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

for $x \neq 0$. This doesn't have a limit as $x \rightarrow 0$ because the $\cos (1 / x)$ oscillates between -1 and 1 so it is not possible that f is C^{1}. If we check the derivative at 0 we have

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0}\left(x \sin \left(\frac{1}{x}\right)-\frac{0}{x}\right)=0
$$

so $f^{\prime}(0)=0$. Hence f is differentiable on all of \mathbb{R}.
10. If we let $t=1 /\left(1-x^{2}\right)$ then as $x \rightarrow \pm 1$ we have $t \rightarrow \infty$ so that the given inequality shows that $f(x) \rightarrow 0$ as $x \rightarrow \pm 1$. So $f(x)$ is continuous on \mathbb{R}. The derivative of f is

$$
f(x)= \begin{cases}\exp \left(\frac{-1}{1-x^{2}}\right) \frac{-2 x\left(1-x^{2}\right)^{k-1}+\left(1-x^{2}\right) p^{\prime}(x)+2 k p(x)}{\left(1-x^{2}\right)^{k+1}} & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

which is of the same form. The limits of the derivatives from left and right at ± 1 are zero so by the Lemma in class f is C^{1}. But f^{\prime} is of the same form as f so f^{\prime} is C^{1} and hence f is C^{2}. By iteration f is smooth.

It follows that h is smooth. Letting

$$
g(x)=\frac{\int_{-\infty}^{x} h(s) d s}{\int_{-\infty}^{\infty} h(s) d s}
$$

gives the required result. Some scaling like

$$
\phi(x)=g\left(\frac{2\|x\|^{2}-\delta^{2}-\epsilon^{2}}{\delta^{2}-\epsilon^{2}}\right)
$$

should give the required result.

