Geometry of Surfaces 2011
Assignment 2 — Solutions

1 . Wehavef X;y;z Xy;y? z.Lleth ; 5 then

fi 01

Define £° 1:1;0 Do 12 and note that it is linear. Then

kf 1 1 : f1;1;0 f°1;1;0 ; ; k 2 2 4
khk 2 2 2

khk

which ¥ 0 as khk T 0 so the derivative exists and is the linear map f° 1;1;0

matrix this is ' (0] 1

f1:1.0 ;o é;g 5 g

- ;2 . Asa

which agrees with the Jacobian matrix of partial derivatives
Ogr on om T '
@6x oy ez Y X 0
of?  @f?  @f? 0 2y 1
ox y 0z

evaluated at X;y;z 1:1;0 .

2. We have ¥ X;y;z X yz;yz . Leth Do then

f 1 | 1 1 2.1 1
f 1,11 2 2.

Define £9 1;1;1 - 2 ; and note that it is linear. Then

kf 1 1 1 f1:1;12 f91;1:1 ; ; k 4 2 2
khk 2 2 2

which ¥ 0 as khk ¥ 0 so the derivative exists and is the linear map f01:1:1

matrix this is e 1

-1 .. 120
f01;1;1 0115 %

Do 2 ; . As a

which agrees with the Jacobian matrix of partial derivatives

gt ot g T !

@ 8x oy 0z A 1 2y O
@f2  of ef< 0 z vy
@x ey 0z

evaluated at X;y;z 1;1;1 .
3. From first principles we have

Fa h Fa ka hk® kak?® kak?® 2ha;hi khk® kak?® 2ha;hi khk%:



SoletF’ a bethelinearmapF’ a h  2ha;hi. Then

jFa h Fa F'a hj

0 khk
khk
which ¥ 0 as khk ¥ 0. So F is di Lerentiable ataand F® a h 2ha; hi. ) )

The alternative approach is to note that F x x1 2 x" 2 so that @F=@x' a  2a'. Clearly the
partial derivatives exist and are continuous for all a 2 R" so from Proposition 2.14 F is di Cerkntiable at all a
and the Jacobian matrix J F a applied to h is 2ath? 2a"h" 2ha;hisoF’a h  2ha;hi.

4 . Notice that F f where F is defined in the previous question. Also from that same question F is

di Cerentiable everywhere. So by the Chain Rule is di [Cerkntiable everywhere. Moreover ¢ a F'f a
flathus a h F fa fla 2hf a;f’a hi.

5 . We have

fa h fa fah La h v La v Lh La Lh v La Vv Lh o

Thus
lim kfa h fa f'a hk I|m 0 o
hi1o khk hro khk

so the derivative exists.

6. Note that ¥ di [ers from F in question 3 by a constant so that ¥ w h FOw h 2hw;hi. Ifw 0
thenf'w h 2hO;hi 0sof’0 :R3 I Risnotonto. Converselyifw Othenf’w w 2 kwk® 0.
Hence if 2 R we can choose so that 2 kwk? sothat f'w w and thus £ w is onto. The result
about the kernel follows from the definition of f* w . Thatis f® w v  Oifandonlyifhw;vi 0.

7. The first part is a straightforward calculation:

] ] 1
oxl 2 2x2 71 kxk® ° 4kxk? 1 2kxk? kxk* 1 kxk? 2
1 kxk2 1 kxk?2 1 kxk?2 1 kxk2 2 1 kxk2 2
The Jacobian matrix is
(0] 1
2 2x%22 2x12 Ax1x?
J e kk228 4x1x? 2 2x12 2x22K%
1 kx 4x1 4x2

Clearly the partial derivatives exist and are continuous so that is C1. Hence is di Cerkntiable and the
derivative ° x is given by multiplication by the Jacobian matrix.

Notice thatim ® x is the span of the columns of J X . Hence it is at most 2-dimensional. If the first
column is zero for some x* and x? then x! 0Oand 2 2 x?2 0 which is not possible. Similarly for the
second column. So both columns are always non-zero. A calculation shows that the columns are orthogonal.
It follows that the columns are linearly independent and thus form a basis forim % x . Henceim °x s
2-dimensional.

Another calculation shows thath x ; °x hi 0 forall h. Hence im ° x x 7. Alternatively
notice that G x k x k? 1 for all x so by the Chain Rule and question 4 we see that 0 G’ x h
2h x; "x hiforallh.Butk xk 1so x Oandthusdim x ? 2 Henceim x x 7.

8 . The first part is a straightforward calculation that

2 2

cos x! sin x? sin x! sin x? cos x? 2 1
The Jacobian matrix is o
sin x! sin x2 cos x! cos %2
J e cos x! sin x2 sin x1 cos %2
0 sin x2

Clearly the partial derivatives exist and are continuous so that is C1. Hence is di Cerkntiable and the
derivative ° x is given by multiplication by the Jacobian matrix.

Notice thatim ° x is the span of the columns of J X . Hence it is at most 2-dimensional. The norm
of the first column is sin? x2 which cannot vanish for x2 2 0; so that the first column is never zero. The
norm of the length of the second column is 1 so it cannot vanish either. So both columns are always non-zero.
A calculation shows that the columns are orthogonal. It follows that the columns are linearly independent and
thus form a basis forim ° x . Henceim ©° x is 2-dimensional.



Another calculation shows thath x ; °x hi Oforallh. Henceim  x X 7. Again this can be
done by the chainruleaswell. Butk x k 1so x Oandthusdim x 7 2. Henceim 0 x x 7.

9 . First notice that f is continuous on all of R except possibly at zero. At zero we have limyigf X 0 as
sin 1=x is bounded and x2 ¥ 0 as x ¥ 0. Hence F is continuous or C° on all of R. Clearly ¥ is di Cereéntiable
away from zero and the derivative is

.1 1
' x 2xsin = cos =
X X

for x 0. This doesn’t have a limit as x ¥ O because the cos 1=x oscillates between 1 and 1 so it is not
possible that F is C*. If we check the derivative at 0 we have

. Fx fO0 . .1 0
lim——— lim xsin — — 0:
x10 X x 10 X X

so 0 0. Hence T is di Cerkentiable on all of R.

10. Ifwelett 1=1 x? thenasx ! 1 we havet ¥ 1 so that the given inequality shows that f x ¥ O as
x T 1. Sof x iscontinuous on R. The derivative of T is

8
< 2x 1 x2 k1 1 x2pd 2K .
eXp o P ERX i 1<ax <1

-0 otherwise.

f X

which is of the same form. The limits of the derivatives from left and right at 1 are zero so by the Lemma in
class f is C1. But U is of the same form as f so % is C! and hence f is C2. By iteration f is smooth.
It follows that h is smooth. Letting

R
“,hs ds

gx R ——-
1 h s ds

gives the required result. Some scaling like

2kxk? 2 2
2 2

should give the required result.



