Geometry of Surfaces III 2011

Assignment 2.

- Please hand up solutions to the starred questions for marking either in the lecture on Tuesday 23rd August or in the Hand-In Box on Level 6 by 5.00 pm on that same day.
- Honours students please hand in the starred questions and question 10.
- For questions involving partial derivatives I am happy for you to make any reasonable claim about functions being continuous or differentiable that you might know from another course. But if I ask for you to prove differentiability from first principles then you need to calculate the limit.
1^{*}. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $f(x, y, z)=\left(x y, y^{2}+z\right)$. Find the derivative $f^{\prime}(1,1,0): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ from first principles (i.e compute the limit) and verify that it equals the Jacobian matrix by also computing the partial derivatives.

2. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $f(x, y, z)=\left(x+y^{2}, z y\right)$. Find the derivative $f^{\prime}(1,1,1): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ from first principles (i.e compute the limit) and verify that it equals the Jacobian matrix by also computing the partial derivatives.
3. Consider the function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $F(x)=\|x\|^{2}$. Show that F is differentiable and that $F^{\prime}(a)(h)=2\langle a, h\rangle$ for all $a \in \mathbb{R}^{n}$. You can either use first principles or show that F is in $C^{1}\left(\mathbb{R}^{n}\right)$ by calculating the partial derivatives and then apply Proposition 2.14 from lectures.

4*. Let f be a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Define the function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\phi(x)=\|f(x)\|^{2}$. Show that if f is differentiable so also is ϕ and find a formula for $\phi^{\prime}(x)$. You may use the previous question.

5*. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear and $v \in \mathbb{R}^{m}$. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $f(x)=L(x)+v$ and show from first principles that $f^{\prime}(a)=L$ for all $a \in \mathbb{R}^{n}$.
6. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(w)=\|w\|^{2}-1$. For any $w=(x, y, z) \in \mathbb{R}^{3}$ calculate the derivative $f^{\prime}(w): \mathbb{R}^{3} \rightarrow$ \mathbb{R} (you can use partial derivatives or question 3). Show that $f^{\prime}(w)$ is onto as a linear map if and only if $w \neq(0,0,0)$. Show also that the kernel of $f^{\prime}(u)$ is

$$
\operatorname{ker} f^{\prime}(u)=\left\{v \in \mathbb{R}^{3} \mid\langle u, v\rangle=0\right\}
$$

7. Define $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
\phi(x)=\left(\frac{2 x^{1}}{1+\|x\|^{2}}, \frac{2 x^{2}}{1+\|x\|^{2}}, \frac{1-\|x\|^{2}}{1+\|x\|^{2}}\right) .
$$

Show that the image of ϕ is inside

$$
S^{2}=\left\{u \in \mathbb{R}^{3} \mid\|u\|^{2}=1\right\}
$$

Show that ϕ is C^{1} and calculate $\phi^{\prime}(x): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ for all x (you can use partial derivatives). Prove that the image of $\phi^{\prime}(x)$ is two-dimensional and satisfies

$$
\operatorname{im} \phi^{\prime}(x)=\phi(x)^{\perp}=\left\{v \in \mathbb{R}^{3} \mid\langle v, \phi(x)\rangle=0\right\}
$$

8^{*}. Let $U \subset \mathbb{R}^{2}$ be defined by $U=(0,2 \pi) \times(0, \pi)$ and define $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
\phi\left(x^{1}, x^{2}\right)=\left(\cos \left(x^{1}\right) \sin \left(x^{2}\right), \sin \left(x^{1}\right) \sin \left(x^{2}\right), \cos \left(x^{2}\right)\right)
$$

Show that the image of ϕ is inside

$$
S^{2}=\left\{u \in \mathbb{R}^{3} \mid\|u\|^{2}=1\right\} .
$$

Show that ϕ is C^{1} and calculate $\phi^{\prime}(x): U \rightarrow \mathbb{R}^{3}$ for all x (you can use partial derivatives). Prove that the image of $\phi^{\prime}(x)$ is two-dimensional and satisfies

$$
\operatorname{im} \phi^{\prime}(x)=\phi(x)^{\perp}=\left\{v \in \mathbb{R}^{3} \mid\langle v, \phi(x)\rangle=0\right\}
$$

9*. Consider the function

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that f is C^{0} on \mathbb{R} and differentiable at all points of \mathbb{R} (including 0) but not C^{1} on \mathbb{R}. You will need to use first principles to get the derivative at 0 .

Remark: It is worth plotting $f(x)$ and $f^{\prime}(x)$ on a graphics calculator, or www.wolframalpha.com or some other plotting package. This is not required for the assessment.
10. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
f(x)=\left\{\begin{array}{lc}
\exp \left(\frac{-1}{1-x^{2}}\right) \frac{p(x)}{\left(1-x^{2}\right)^{k}} & \text { if }-1<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

for some polynomial p and natural number k. Use that fact that $\lim _{t \rightarrow \infty} \exp (-t) t^{k}=0$ for any natural number k to deduce that f is continuous. Show that the derivative of f has the same form as f with a different k and p and hence deduce that f is smooth.

Consider now

$$
h(x)= \begin{cases}\exp \left(\frac{-1}{1-x^{2}}\right) & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

By integrating h find a smooth function $g: \mathbb{R} \rightarrow \mathbb{R}$ with the property that $g(x)$ is zero for $x<-1$ and $g(x)$ is one for $x>1$. Show that for any $\epsilon>\delta>0$ there is a smooth function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\phi(x)$ equal to zero if $\|x\|>\epsilon$ and ϕ equal to one if $\|x\|<\delta$.

Remark: It is worth plotting $h(x)$ on a graphics calculator, or www.wolframalpha.com or some other plotting package. This is not required for the assessment.

