Geometry of Surfaces 2011

Assignment 1 - Solutions

1. For Cauchy's inequality we note first that if $y=0$ then the inequality holds as both sides are zero. So we can assume that $y \neq 0$. In that case we consider

$$
\left\langle x-\frac{\langle x, y\rangle}{\langle y, y\rangle} y, x-\frac{\langle x, y\rangle}{\langle y, y\rangle} y\right\rangle \geq 0 .
$$

Expanding and simplifying gives Cauchy's inequality.
For the triangle inequality notice that from Cauchy's inequality we have that

$$
\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2} \leq\|x\|^{2}+2\|x\|\| \| y\|+\| y \|^{2} .
$$

But this is just

$$
\langle x+y, x+y\rangle \leq(\|x\|+\|y\|)^{2}
$$

and taking square roots preserves the inequality and gives the required result.
2*. Notice that from the triangle inequality $\|x\|=\|(x-y)+y\| \leq\|x-y\|+\|y\|$. Swapping x and y gives $\|y\| \leq\|y-x\|+\|x\|=\|x-y\|+\|y\|$ as $\|-w\|=\|w\|$. Subtracting gives us $(\|x\|-\|y\|) \leq\|x-y\|$ and $(\|y\|-\|x\|) \leq\|x-y\|$. But $\mid\|x\|-\|y\| \|$ is either $\|x\|-\|y\|$ or $\|y\|-\|x\|$. This gives the required result.

3*. We have from (2)

$$
0 \leq\left|\|x\|-\left\|x_{n}\right\|\right| \leq\left\|x-x_{n}\right\|
$$

But as $x_{n} \rightarrow x$ we know that $\left\|x-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence by the Squeeze Lemma we conclude that $\mid\|x\|-$ $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. But this is the definition of $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|x\|$ so we are done.
4. We have

$$
\begin{aligned}
\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| & =\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle-\left\langle x, y_{n}\right\rangle+\left\langle x, y_{n}\right\rangle\right| \\
& =\left|\left\langle x_{n}-x, y_{n}\right\rangle+\left\langle x, y_{n}-y\right\rangle\right| \\
& \leq\left|\left\langle x_{n}-x, y_{n}\right\rangle\right|+\left|\left\langle x, y_{n}-y\right\rangle\right| \\
& \leq\left\|x_{n}-x\right\|\left\|y_{n}\right\|+\|x\|\left\|y_{n}-y\right\| .
\end{aligned}
$$

Now from (3) we have that $\left\|y_{n}\right\| \rightarrow\|y\|$ and thus if we take $\epsilon=1$ we have that there is an N such that for any $n \geq N \mid\left\|y_{n}\right\|-\|y\| \| \leq 1$ and thus $\left\|y_{N}\right\| \leq\|y\|+1$. Hence

$$
0 \leq\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| \leq\left\|x_{n}-x\right\|(1+\|y\|)+\|x\|\left\|y_{n}-y\right\| .
$$

The RHS goes to zero as $n \rightarrow \infty$ so by the Squeeze Lemma $\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| \rightarrow 0$ and thus $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$ as $n \rightarrow \infty$.

5*. First we note that

$$
\max \left\{\left|x^{1}\right|^{2}, \ldots,\left|x^{n}\right|^{2}\right\} \leq \sum_{i=1}^{n}\left(x_{i}\right)^{2}
$$

and that

$$
\sqrt{\max \left\{\left|x^{1}\right|^{2}, \ldots,\left|x^{n}\right|^{2}\right\}}=\max \left\{\left|x^{1}\right|, \ldots,\left|x^{n}\right|\right\}
$$

So taking square roots of the first equation gives

$$
\max \left\{\left|x^{1}\right|, \ldots,\left|x^{n}\right|\right\} \leq\|x\|
$$

For the other side

$$
\sum_{i=1}^{n}\left(x_{i}\right)^{2} \leq \sum_{i=1}^{n} \max \left\{\left|x^{1}\right|^{2}, \ldots,\left|x^{n}\right|^{2}\right\}=n \max \left\{\left|x^{1}\right|^{2}, \ldots,\left|x^{n}\right|^{2}\right\}
$$

and taking square roots gives

$$
\|x\|=\sqrt{n} \max \left\{\left|x^{1}\right|, \ldots,\left|x^{n}\right|\right\}
$$

6. Consider $y \in B(x, \epsilon)$. We want to find a $\delta>0$ such that $B(y, \delta) \subset B(x, \epsilon)$. It is best to draw a picture and make a guess for the radius of the circle around y that makes that ball sit inside the ϵ radius ball around x. A good guess is $\delta=\epsilon-\|x-y\|$. Notice that $\delta>0$ as we required. Let $z \in B(y, \delta)$ so that $\|z-y\|<\epsilon-\|x-y\|$. Then

$$
\|x-z\| \leq\|x-y\|+\|y-z\|<\epsilon
$$

so that $z \in B(x, \epsilon)$. But z was any element of $B(y, \delta)$ so that $B(y, \delta) \subset B(x, \epsilon)$.
7. I'll talk about this in the tute and draw some pictures. The answers are
(a) For a tetrahedron we have $f=4, e=6$ and $v=4$ so that $\chi=4-6+4=2$.
(b) After you identify the edges of the square you should get $f=2, e=3$ and $v=1$ so that $\chi=2-3+1=0$.
(c) You should get $X=-2$.
(d) For a surface of genus g we have $x=2-2 g$. I'll try and do the drawing in the tutorial.

