Geometry of Surfaces III 2011

Assignment 1.

Please hand up solutions to the starred questions for marking either in the lecture on Tuesday 9th August or in the Hand-In Box on Level 6 by 5.00 pm on that same day. The Hand-In Boxes are straight in front of you as you come out of the lifts on Level 6.

1. If $x, y \in \mathbb{R}^n$ show that

 $|\langle x, y \rangle| \le ||x|| ||y||$ Cauchy's inequality,

and

 $||x + y|| \le ||x|| + ||y||$ Triangle inequality.

2*. If $x, y \in \mathbb{R}^n$ show that

$$|||x|| - ||y||| \le ||x - y||.$$

Hint: If you are not sure what to do about the modulus sign try replacing this single inequality by a pair of inequalities which are equivalent to it.

3*. Using (2) or otherwise show that if $\lim_{n\to\infty} x_n = x$ then $\lim_{n\to\infty} ||x_n|| = ||x||$.

4. Let (x_n) and (y_n) be sequences in \mathbb{R}^n . Assuming that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ show that $\lim_{n\to\infty} \langle x_n, y_n \rangle = \langle x, y \rangle$. Hint: you need to consider $|\langle x_n, y_n \rangle - \langle x, y \rangle|$ and make a cunning insertion of some $\langle z, w \rangle - \langle z, w \rangle$ so you can apply Cauchy's inequality. You might need (3) as well.

5*. Let
$$x = (x^1, \dots, x^n) \in \mathbb{R}^n$$
. Show that if $||x||^2 = \sum_{i=1}^n |x^i|^2$ then

$$\max\{|x^1|, \dots, |x^n|\} \le ||x|| \le \sqrt{n} \max\{|x^1|, \dots, |x^n|\}.$$

6. Let $\epsilon > 0$ and $x \in \mathbb{R}^n$. Show that the open ball $B(x, \epsilon)$ is an open set in \mathbb{R}^n .

7. For this question you only need to draw and count things. I'm not expecting precise proofs. We say a surface has been triangulated if you have drawn a collection of triangles on it covering it completely and overlapping only along edges and vertices. For any triangulation \mathcal{T} let f be the number of faces, e the number of edges and v the number of vertices. We define the *Euler class* χ of the triangulation by

$$\chi(\Sigma,\mathcal{T})=f-e+v.$$

It is a remarkable fact that the Euler class depends only on the surface, not on the triangulation.

- (a) Calculate the Euler class of the sphere by calculating it for a tetrahedron or triangulating a cube.
- (b) Calculate the Euler class of a torus by thinking of it as a square with appropropriate edges and vertices identified. You can just divide the square into two triangles along a diagonal.
- (c) Calculate the Euler class of a surface of genus 2.
- (d) Can you make a conjecture for the Euler class of a surface of genus *g*? Can you prove it by chopping up a surface of genus *g* into triangles?