## Geometry of Surfaces III 2011

## Assignment 1.

Please hand up solutions to the starred questions for marking either in the lecture on Tuesday 9th August or in the Hand-In Box on Level 6 by 5.00 pm on that same day. The Hand-In Boxes are straight in front of you as you come out of the lifts on Level 6.

1. If $x, y, \in \mathbb{R}^{n}$ show that

$$
|\langle x, y\rangle| \leq\|x\|\|y\| \quad \text { Cauchy's inequality, }
$$

and

$$
\|x+y\| \leq\|x\|+\|y\| \quad \text { Triangle inequality. }
$$

$2^{*}$. If $x, y, \in \mathbb{R}^{n}$ show that

$$
|\|x\|-\|y\|| \leq\|x-y\| .
$$

Hint: If you are not sure what to do about the modulus sign try replacing this single inequality by a pair of inequalities which are equivalent to it.

3*. Using (2) or otherwise show that if $\lim _{n \rightarrow \infty} x_{n}=x$ then $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|x\|$.
4. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in $\mathbb{R}^{n}$. Assuming that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$ show that $\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=\langle x, y\rangle$. Hint: you need to consider $\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right|$ and make a cunning insertion of some $\langle z, w\rangle-\langle z, w\rangle$ so you can apply Cauchy's inequality. You might need (3) as well.

5*. Let $x=\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}$. Show that if $\|x\|^{2}=\sum_{i=1}^{n}\left|x^{i}\right|^{2}$ then

$$
\max \left\{\left|x^{1}\right|, \ldots,\left|x^{n}\right|\right\} \leq\|x\| \leq \sqrt{n} \max \left\{\left|x^{1}\right|, \ldots,\left|x^{n}\right|\right\}
$$

6. Let $\epsilon>0$ and $x \in \mathbb{R}^{n}$. Show that the open ball $B(x, \epsilon)$ is an open set in $\mathbb{R}^{n}$.
7. For this question you only need to draw and count things. I'm not expecting precise proofs. We say a surface has been triangulated if you have drawn a collection of triangles on it covering it completely and overlapping only along edges and vertices. For any triangulation $\mathcal{T}$ let $f$ be the number of faces, $e$ the number of edges and $v$ the number of vertices. We define the Euler class $\chi$ of the triangulation by

$$
\chi(\Sigma, \mathcal{T})=f-e+v
$$

It is a remarkable fact that the Euler class depends only on the surface, not on the triangulation.
(a) Calculate the Euler class of the sphere by calculating it for a tetrahedron or triangulating a cube.
(b) Calculate the Euler class of a torus by thinking of it as a square with appropropriate edges and vertices identified. You can just divide the square into two triangles along a diagonal.
(c) Calculate the Euler class of a surface of genus 2.
(d) Can you make a conjecture for the Euler class of a surface of genus $g$ ? Can you prove it by chopping up a surface of genus $g$ into triangles?

