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1. Introduction (Background from Algebra Il)

1.1. Groups and Subgroups.

Definition 1.1. A binary operation on a set G is a function G G ¥ G often written just as juxtoposition, i.e
XY » XYy.

Definition 1.2. A group is a set G with a binary operationG G I G, X,y , Xy, afunctionG ! G, x , x 1!
called the inverse and an element e 2 G called the identity satisfying:

@ xy z xyz 8x;y;z;2G

(b) ex x xe 8x2G,and

) xx 1 e xIx 8x26G.

Definition 1.3. Let G be a group.

(@) For x;y 2 G we say that x and y commute if Xy yX.
(b) If every X;y in G commute we call G an abelian group.

Proposition 1.4. (Basic properties of groups).

(a) The identity is unique. Thatisif F 2Gand fx x xfforallx2Gthenf e.

(b) If x 2 G then x lisunique. Thatisifxy e yxtheny x 1

(c) Any bracketing of a multiple product x1X>» Xn gives the same outcome so no bracketing is necessary.
(d) Cancellation laws hold. Thatisifax ay thenx Yy andifxa yathenx V.

Definition 1.5. IfH G we say that H is a subgroup of G if:

(@) 8x;y 2 H we have xy 2 H,
(b) 8x 2 H we have x * 2 H and
(c) e2 H.

Note 1.1. If H is a subgroup of G we write H < G. IfFH <Gand H G we say that H is a proper subgroup of
G.

Note 1.2. A subgroup is a group.

Proposition 1.6. (Properties of subgroups)

(@ IfH G then H isasubgroupifandonlyif H 3 and for all x;y 2 H we have xy ! 2 H.
(b) hei <G and G <G.
(c) If H and K are subgroups of G then H \ K is a subgroup of G.
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Note 1.3. Sometimes it is useful to draw the subgroup lattice of a group G. This is a directed graph whose
nodes are the subgroups of G with H and H° joined by a directed edge if H < H®. We usually draw this
vertically with G at the top and hei at the bottom. If we have H < H? < H® then we obviously have H < H®
but we usually omit that edge to stop the graph becoming too complicated.

Definition 1.7. If G is a group and has a finite number of elements we call it a finite group. The number of
elements is called the order of G and denoted jGj. If G is not a finite group we call it an infinite group and
say it has infinite order.



X1 X2 Xn
X1 | X1X1  Xi1X2 X1Xn
X2 | XoX1  XoX2 X2Xn
Xn | XpX1 XnpX2 XnXn

k 1k

Note 1.4. If x 2 G then we write x° e, x XX X where there are k x’s in the product and x k X

Definition 1.8. If G is a group and x 2 G we say that x has order n if n is the smallest non-negative integer
for which x" e. We denote the order of x by jxj. If X" e for all n we say that x has infinite order.

Definition 1.9. If G is a group and X G we define hXi to be the smallest subgroup of G containing X and
called it the subgroup generated by X.

Note 1.5. If X G then hXi consists of all arbitrary products of elements of X with arbitrary integer powers.

Definition 1.10. If G is a group with X G and hXi G we say that X generates G. If X is finite we say that
G is finitely generated.

Definition 1.11. If G is a group which is generated by one element x 2 G we call G cyclic.
Note 1.6. Cyclic groups are abelian.
Theorem 1.12. Any subgroup of a cyclic group is cyclic.

Note 1.7. If G * hxi has finite order n then the subgroups of G are exactly the subsets hx9i where djn. If
G hxi is infinite then each hx%i is a subroup ford 1;2;:::.

1.2. Examples of Groups.

(1) The integers Z, the rationals Q, the real numbers R, and the complex numbers C are all abelian groups
under addition.

(2) Thesetsofn n matrices, M Z ,My Q ,My R and M, C are abelian groups under matrix addition.

3 z Z T0g is not a group under multiplication but Q ,R and C are.

(4) GL n;R the set of all invertible matrices in My R isagroup asis GL n;C .

Example 1.1. (The quaternion group.) Let H £ 1; i; j; kg and define the multiplication by letting the
identity be 1 and assuming that 1 commutes with everything else and that also
ij ji kjk  kj ki ik Ji? j° K 1 and ijk 1

This group H is called the quaternion group. It is not abelian and has order 8.
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Example 1.2. (Integers modulo n.) Define Z, f0;1;2;:::;n 1g and define a binary operation on it by using
addition modulo n. That is we add x and y to get X vy and then calculate the remainder modulo n. This
makes Zn, into an abelian group which is cyclic and generated by 1.

Proposition 1.13. ThesetZ, Z, f0g is a group under multiplication if and only if p is prime.

Definition 1.14. A field is a set F with two binary operations ; such that

(@ F; is an abelian group
(b) F ; isan abelian group, where F FnfOg
(c)ab c ab ac foralla;b;c2F.

Some examples of fields are Q; R; C; Z, where p is prime. The latter example is also denoted GF p .



1.2.1. Matrix groups. The set GL n;F of all invertible n N matrices over a field F is a group under matrix
multiplication.

Some subgroups of GL n;F are SL n;F , scalar matrices and diagonal matrices. We denote GL n;Z, also
by GF n;p .

1.2.2. Permutation groups.
Definition 1.15. A permutation on n lettersisal 1, onto function from f1;2;:::;ngto f1;2;:::;Nng.

For a given n, the set of all these forms a group S, under composition of functions called the symmetric group
on n letters.

Recall
(1) 1 will use composition of functions so if ; 2 S then is defined by k k
(2) jSnj n!

(3) Each element of S, can be written as a product of disjoint cycles. This decomposition is unique up to
the order of writing the cycles.

(4) The group Sp, is not abelian if n 3.

(5) A transposition is a cycle of length 2. Every permutation can be written as a product of transpositions.

(6) A permutation is called even or odd according to whether it is the product of an even or odd number
of transpositions. The set of all even permutations in Sy, is a group, the alternating group A, on n
letters, and jAnj 2.

(7) A cycle of even length is an odd permutation and a cycle of odd length is an even permutation.
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Definition 1.16. A permutation group of degree n is a subgroup of Sp.

1.2.3. Symmetry groups. The symmetries of the square form a group of order 8, the dihedral group Dy4.
Similarly, the symmetries of the regular n-gon form a group of order 2n, the nth dihedral group Dp,. Clearly
Dn < Snh, so D4 is another example of a permutation group of degree 4.

1.3. Isomorphism.

Definition 1.17. Two groups G and H are called isomorphic if thereisa1l 1, onto function :G ¥ H such
that for all X;y 2 G we have Xxy X A

Note 1.8. We call such a an isomorphism. If G and H are isomorphic, we write G = H.

Proposition 1.18. Assume that : G ¥ H is an isomorphism and that x 2 G. Denote the identities of G and H
by ec and ey. Then

(a) ec ey.

b x1 %
(c) G jH]j

(d) Either x and  x are both of infinite order or they have equal finite order.
(e) If G is abelian so is H.

1

2. Cosets and Normal Subgroups

2.1. Cosets.

Definition 2.1. Let H < G. A left coset of H in G is a set of the form
xH fxhjh2Hg;

where X is an element of G. Similarly, a right coset is a set of the form
Hx fhx jh 2 Hg:
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Proposition 2.2. Let H < G. Then
(@ jgHj jHj jHgj.
(b) Ifx;y 2 G theneitherx 'y 2HandxH yHorx 'y HandxH\yH :.

(©) If x;y inG then eitheryx '2HandHx Hyoryx ! HandxHx\Hy ;.

)
(d) Every element of G is in exactly one left coset of H and exactly one right coset of H.
(e) G is the disjoint union of the left (or right) cosets of H.
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Definition 2.3. If H < G, the index of H in G is the number of distinct left cosets of H in G. It is denoted
G:H.

Theorem 2.4. (Lagrange’s Theorem) If H is a subgroup of a finite group G then
G:H @

JH]

and thus jHj divides jG;j.

Corollary 2.5. If x is an element of the finite group G, then jxj divides jGj.

Corollary 2.6. Every group of prime order is cyclic.

2.2. Normal subgroups. If H <G and g 2 G, the left coset gH and the right coset Hg are in general not the
same set. For example, considerG Sz f1; 12 ; 13 ; 23 ; 123 ; 132 gandthesubgroupH f1; 12 g.

Left cosets of H Right cosets of H
1H f1; 129 H1 f1; 12¢g
12H f12;1g H12 f12;1g

13H f13;123g | H13 f13;132¢g
23H f23;132g | H23 f23;123¢g
123H f123;13g|H 123 f123; 23¢g
132H f132;23g|H 132 f132;13¢g

Compare this example with what we get when we consider the subgroup A; f1; 123 ; 132 g:

Left cosets of Az Right cosets of A3
1A; f1; 123 ; 1329 Azl f1; 123 ; 132¢g
12 A3 f12;23; 13¢g Az 12 f12;13; 23¢g
13A; f13;12;23¢g Az 13 f13;23;12¢g
23 A3 f23;13;12¢g A3z 23 f23;12;13¢g
123 A3 f123;132;1g|A3123 f123; 132 ;19
132 A3 f132;1; 123 g|A3132 f132;1; 123¢g

We see that gA3 Az g for every g 2 As.
Definition 2.7. A subgroup H of a group G is normal ifforallg 2 G; gHg ' H.

We write H /7 G. Equivalently, H /G ifgH Hgforallg2G.
Note 2.1. We saw in the above examples that f1; 12 g &Sz and Az 7/ Ss.

Proposition 2.8.

(a) Whenever G:H 2, H/G. In particular, An Z S forn  3;4;5; ..
(b) Every subgroup of an abelian group is normal.

(c) flg/Gand G/ G.

d fH/Z/Gand K/ Gthen H\KZG.

e) fN/Z/Gand N<H<GthenN/H.



2.3. Conjugation.

Definition 2.9. Letg 2 Gand let X G. Then the subset gXg ! is called a conjugate of X in G. In particular,
if X 2 G, then the element gxg 1! is called a conjugate of x (in G).
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Note 2.2.

(1) A conjugate of x has the same order as x. (Assignment 1)
(2) We say that x is conjugate to y if y is a conjugate of x, ie if there is some g 2 G withy gxg .

Proposition 2.10. Conjugacy is an equivalence relation on G.

Note 2.3. The equivalence class of X is called the conjugacy class of x and denoted x . The conjugacy classes
partition G:

G 1 L x L z:
2.3.1. Centralizer.

Definition 2.11. The centralizer Cg X of x in G is the subgroup consisting of all elements of G that commute
with x.

Thus, Cg X fg2Gjgx xgg fg2Gjgxg ! xg.

Note 2.4.

(1) hxi<Cg X .
(2) If G is abelian, then Cg x G.

Proposition 2.12. If x 2 G a finite group then j X j G:Ce X

2.3.2. Centre.
Definition 2.13. The centre Z G of a group G is the subgroup of G consisting of all elements x 2 G that
commute with every elements of G.

Thus, Z G fx2Gjxg gxforallg?2Gg.

Note:

1)z G /¢G.
2z G G if and only if G is abelian.
(3) x2Z G ifandonlyif x fxg, or equivalently j x j 1.

2.3.3. Simple groups.

Definition 2.14. A group G is called simple if G has no proper non-trivial normal subgroups.
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Theorem 2.15. An abelian simple group G with jGj > 1 must be isomorphic to Cp for some prime p.
Definition 2.16. A group of order p", where p is prime, is called a p-group.

Lemma 2.17. Let P be a p-group of order p", n 1. ThenZ P 6 hei. Thus P is not simple unless n 1, that
isP ” Cp.
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2.3.4. Conjugates of a subgroup, and the normalizer. If H < G, the conjugates of H are the subgroups gHg 1,
forg 2 G.

Definition 2.18. The normalizer of a subgroup H of G is the subgroup
Ne H fg2GjgHg ! Hg:

Note 2.5. Ng H is the largest subgroup of G in which H is normal. ThatisifH/Ng H ,andifH/K <G
then K <Ng H .

Proposition 2.19. If H is a subgroup of a finite group G then the number of distinct conjugates of H in G equals
G:Ng H

3. Homomorphisms and Factor Groups

3.1. Homomorphisms.

Definition 3.1. If G and H are groups, a homomorphism from G to H is a function £ : G ¥ H such that
fxy fx*Tfy

forall x;y 2 G.
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Proposition 3.2. If £ : G ¥ H is a homomorphism, then

Q) £ e e.

2 fg? fg L

(3) The image of F,im f f G ff g jg 2 Gg; is a subgroup of H.

(4) The kernelof f, kerf fg2Gjf g eg; is a normal subgroup of G.

(5) A homomorphism F is one to one if and only if ker f hei. So T is an isomorphism if and only if
kerf fegandim F H.

Proposition 3.3. Let F: G ¥ H be a homomorphism of groups. If K G define f K ffk jk2Kg H
andifL Hdefinef 'L fg2Gjf g 2Lg G.We have:

) FTK<Gthenf K <H.
yIfL<Hthenf 1 L <G.
) If K/ G and f isonto then f K / H.
YIfL/Z/Hthenf 1L /G.

(a
(b
(c
d

3.2. The factor group. Let N / G. Consider the set
G=N fgNjg2Gg
of left cosets of N in G. This set is a group under the operation
agNhN gh N:
This group is called the factor or quotient group of G by N. Its order is jGj=jNj G:N .

Theorem 3.4. (Homomorphism Theorem) Let ¥ : G ¥ H be a homomorphism. Then the groups G=ker ¥ and
f G are isomorphic.

Theorem 3.5. Let N / G. Then the function ¥ : G ¥ G=N given by f g gN is a homomorphism with kernel
N.

Week 4 — Lecture 9 — Thursday 25th March 2010.




3.3. Related results.

Lemma 3.6. Let G be a group such that G=Z G is cyclic. Then G is abelian.
Corollary 3.7. G=Z G cannot be cyclic of order greater than one.

Lemma 3.8. Every group of order p? is abelian.

Theorem 3.9. Let N / G. Then there is a 1-1 correspondence between subgroups of G containing N and
subgroups of G=N, namely
if N <H <G then H $ H=N:

Every subgroup of G=N is of form H=N for some subgroup H of G containing N.

Also, H / G if and only if H=N / G=N.

3.4. Composition series.

Definition 3.10. Let N/ G. Then N is called a maximal normal subgroup of G if the only normal subgroup of
G that properly contains N is G itself.

Then N is a maximal normal subgroup of G if and only if G=N is simple.
Definition 3.11. A composition series of a group G is a sequence of subgroups
feg Nk 1Z/NxZ::/N2/N1/ZNg G;
such that each N; ; is a maximal normal subgroup of Nj. That is, each factor group N;j=N; 1 is simple.

Theorem 3.12. The Jordan-Holder Theorem states that for any composition series, the number of factors k
and the set of factor groups fN;j=N; 1ji 0;1;::; kg is unique.

3.5. The derived group. Let X be asubsetof G. ThenH hXi denotes the smallest subgroup of G containing
X. We say that H is generated by X. Then H is the set of all products of the form xi”i :::x;1J , where Xj; 5 X5 2 X
and nj; Ny 2 Z.

Definition 3.13. The commutator of the elements g;h 2 G is g;h ghg 'h 1. The derived group or
commutator subgroup of G is the group

G G;G hgh jgh2Gi:
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Note 3.1.
(1) Elements g and h commute if and only if g;h e.
2 gh ' hig.
(3) G feg if and only if G is abelian.
Proposition 3.14. Let G be a group and G its commutator subgroup. Then:
(@) G'/G.
(b) G=G' is abelian.
(¢) If N/ G and G=N is abelian, then G’ < N. Thus G’ is the smallest normal subgroup of G with abelian
factor group.

4. Products of Groups

4.1. The isomorphism theorem. Let H and K be subgroups of the group G. We define
HK fhkjh 2 H;k 2 Kg:

Then HK < G ifand only if HK  KH.
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In particular, ifH Z G or K/ G then HK < G.

If HK < G, then

e JHIIK]

HK :
S TERNY:

Theorem 4.1. (The Isomorphism Theorem) Let H and K be subgroups of G withH/G. Then HK=H * K=H\K.

Week 5 — Lecture 11 — Tuesday 30th March 2010.

4.2. Direct products of groups. Let H and K be groups. Then we can make the cartesian product
H K fhkjh2H;k2Kg
into a group, called the (external) direct product of H and K, by defining
h;k  h%K hh; kk®
forallh;h" 2 H;k;k? 2 K. Then H K has subgroups

Ho fhe jh2Hg ” H;
Ko fek jk2Kg* K:

Proposition 4.2. Let H and K be groups as above. Then:

(1) Ho\Ko feeg feg.

(2) Forallh 2 H;k 2 K we have h;e ek h; k e;k h;e . Hence G HgKp.

(3) We write h;e as hand e;k as k, and identify Hp and Kg with H and K. Then every g 2 G can be
written uniquelyasg hkforh2 H;k 2 K.

4 H/Gand K/ G.

(5) iGi jH Kj jHjjK].

(6) G=H * K and G=K * H.

4.3. The internal direct product.
Definition 4.3. A group G is decomposable if it is isomorphic to a direct product of two proper non-trivial

subgroups. Otherwise G is indecomposable.

If G is decomposable then G has subgroups H and K such that

() H\K feg
(i) G HK
(iii) hk khforallh2 H:k 2 K.

Then we write G H K and say that G is the (internal) direct product of H and K.
Equivalently, if (iii)’ is the statement:
([iYH/Gand K/ G

then (i), (ii) and (iii)’ imply that G H K.
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5. Finitely generated abelian groups

5.1. The fundamental theorem.

Definition 5.1. A group G is finitely generated if there is some finite subset X of G such that G hXi.

Thus G hxs;::i; Xni, the set of all finite products of the xjs and their inverses.

Definition 5.2. If every element of a group G has finite order then G is called a torsion group. If only the
identity e has finite order then G is called a torsion-free group. If G is an abelian group, then the subgroup of
G consisting of all elements of finite order is called the torsion subgroup of G and denoted Tor G .

Theorem 5.3. (Fundamental Theorem of Finitely Generated Abelian Groups) Every finitely generated abelian
group is isomorphic to a direct product of cyclic groups of the form

Ch; Ch, i Cp Ci1 i Ca;

s

where each nij piai for some prime p;j and a; 2 N. (The pj need not be distinct.)

Note:

(1) The torsion subgroup of G is Tor G Ch; Cn, i Cp,. ThusjTj ninziins.
(2) The group F Fl {z CJ} is torsion free. (It is called a free abelian group of rank f£.) The number

£ factors
of factors T is the (free) rank or Betti number of G. G is finite if and only if ¥ 0.
(3) SinceC, Cm ? Chm if m and n are coprime, we can also write

T 7Cq, i Cqg,
whered; jdz j::jdiyand jTj dids::de. The dj, known as the torsion invariants of G, are unique.

(4) Two finitely generated abelian groups are isomorphic if and only if they have the same free rank and
the same torsion invariants.
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Corollary 5.4. The indecomposable finite abelian groups are precisely the cyclic groups of order p2, where p
is prime, a 2 N.

Corollary 5.5. If G is a finite abelian group and m divides jGj then G has a subgroup of order m.

5.2. Generators and relations for abelian groups. Suppose that an abelian group is defined by generators
X1;X2; .5 Xm and a number of relations of the form

X:I 11X221 Xm . e
X] 12X222 Xm 2 e
Nin I Nm

X]1X22n:::an e:

We also know that Xj; X;j e for all i;j as G is abelian.
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To determine the rank and torsion invariants of G we use the following procedure.

Write the exponents nj; in a matrix N, with the jth relation corresponding to the jth column. There must be
at least as many columns as rows, so we have an m n matrix with n  m. (If not, add columns of zeros to
maken m).
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We then use certain row and column operations to reduce N to a diagonal matrix in which the diagonal entries
are di;:::;d¢; 0;:::; 0 and the successive non-zero entries divide one another: di j d2 j ::: j d¢: Then the entries
d;;:::d¢ are the torsion invariants of G and the number of zeros is the rank of G.

5.2.1. Permissible row and column operations.

(i) Interchange any two rows: Rj; Rj Rj: Ri:
(i) Multiply any row by 1: R;j R;.
(iii) Add to any row an integer multiple of another row: R; Ri cRj;c2z

The corresponding column operations are also permitted.

It is not permissible to:
(i) Multiplyarowbyc,ifc6 1.
(ii) Replace Rj by cR; dRj,ifc6 1.

5.2.2. Why does it work? Row operations correspond to changing the generators, column operations to ma-
nipulating the relations. Specifically, the row operation R; Ri cRj corresponds to replacing generator Xxj

byyi Xjx;°.

5.2.3. Procedure. The initial aim is to get the g.c.d. of all entries in the matrix to the 1;1 position, and then
use this entry as a pivot to eliminate all other entries in the first row and column. Then repeat this procedure
onthe m 1 n 1 submatrix obtained by removing the first row and column. Continue.

To get the g.c.d. to the 1;1 position, it will in general be necessary to use the Division Algorithm several
times on the rows and/or c%lum'r_\s, asin gme following examples:

7 7 1
30 i 2 ... Rz Ra 4Ry 2 ... Ri Ri SRy
- o e PR g PR PR ”
15 O 15 0 15 O 5 20 5 0 5 0
0 20 20 20 5 20 15 O 0 60 0 60

6. Groups Acting on Sets

6.1. Introduction.
Definition 6.1. Let G be a group and X aset. AnactionofGon XisamapG X ¥ X, g;Xx , g Xxsuch
that

(i) foreach g1;02 2 G and x 2 X,

9192 X 01 Q2 X
(i) foreachx 2 X,e x x.

If there is no confusion, we may write gx forg X.
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Note:
(1) Shactson X T1;2;:::; Nng.
(2) Gactson X G by
(@) conjugation: g x gxg !
(b) left multiplication: g x gx.
(3) If H < G, G acts on the left cosets of H by left multiplication: g xH gxH.
(4) IfG GL n;F andV is a vector space of dimension n over F, then G acts on V by matrix multiplication.

Definition 6.2. If G acts on X then forany x 2 X, X fg X jg 2 Ggiscalled an orbit in X of the action.

If there is only one orbit then we say G is transitive on X.
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Proposition 6.3. The orbits of a group G acting on a set X are the equivalence classes under the equivalence
relation on X:

x yifandonlyify g xforsomeg?2G:

Hence X is the disjoint union of the distinct orbits.
Definition 6.4. If G acts on X then for any x 2 X, the stabilizer of x 2 X is
Sg X fg2Gjg x xg:

The stabilizer of x is a subgroup of G. It is sometimes called the isotropy subgroup of x, and sometimes
denoted Gx.

6.2. The Orbit-Stabilizer Theorem.

Theorem 6.5. (Orbit-Stabilizer Theorem) Let G act on X. Then for any x 2 X,
Jx] G:Sg X
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6.3. Burnside’s Theorem.

Theorem 6.6. (Burnside’s Theorem) Let G be a finite group and X a finite set such that G acts on X. Let r be
the number of distinct orbits of G on X and for each g 2 G let
Xg X2Xjg x Xg;

the set of all elements in X fixed by g. Then
X
rjGj JXg]:
g2G

6.3.1. Application of Burnside’s theorem to chemistry.

Week 8 — Lecture 17 — Monday 3rd May 2010.

6.4. Cayley’s Theorem.

Theorem 6.7. (Cayley’s Theorem) Every group is isomorphic to a group of permutations.
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7. The Sylow Theorems

7.1. Sylow’s first theorem. The results of this chapter are due to the Norwegian mathematician Ludvig Sylow
(1832 - 1918), though the proofs have been modernized. Along with Lagrange’s theorem, they are the most
important results of finite group theory — Lagrange’s theorem gives a necessary condition for subgroups, and
Sylow’s theorems give su [cieht conditions.

Theorem 7.1. Sylow’s First Theorem Let G be a finite group of order p™r, where p is a prime and r is coprime
to p. Then G has a subgroup P of order p™.

Such a subgroup P, the existence of which is guaranteed by this theorem, is called a Sylow p-subgroup of G.
Lemma 7.2. Let G be a finite p-group acting on the finite set X. Let

F fx2Xjg x xforallg?2Gg:
Then jFj jXj modp .
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7.2. Sylow’s second and third theorems.

Theorem 7.3. (Sylow’s Second Theorem) Let P be a Sylow p-subgroup of the finite group G of order p™r,
where r is coprime to p. If Q is any p-subgroup of G (that is, jQj is a power of p) then Q < gPg * for some
g20G.

In particular, all Sylow p-subgroups are conjugate.

Lemma 7.4. (i) LetP be a Sylow p-subgroup of G and suppose P/G. Then P is the only Sylow p-subgroup
of G.
(ii) In any finite group G, P is the only Sylow p-subgroup of Ng P .

Theorem 7.5. (Sylow’s Third Theorem) Let P be a Sylow p-subgroup of G. Then the number of Sylow p-
subgroupsof Gis G:Ng P . Further, G:Ng P 1 modp .

Theorem 7.6. (Cauchy’s Theorem) Let p divide jGj. Then G contains an element of order p.

Corollary 7.7. If p divides jGj then G has a subgroup of order p.
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7.3. Examples. We consider the structure of groups of order pq, where p and q are distinct odd primes,
groups of order 2p where p is prime and groups of order less than or equal to 15.

8. Rings
8.1. Definitions.
Definition 8.1. A ring is a set R with two binary operations ; such that
) R; is an abelian group
(i) a bc ab c for all a;b;c 2 R (Associative law for multiplication)

(i) ab c ab acand a b c ac bcforalla;b;c 2R (Distributive laws).

Notes:

(1) As usual, we often omit and write ab instead of a b.
(2) R; isnot necessarily a group — why?
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(3) The additive identity of R; isdenoted 0. Thusa 0 O a aforalla2R.

(4) The additive inverse of R; is denoted a. Thus a a a a Oforalla2R.

(5) R is called a commutative ring ifab ba for all a;b 2 R.

(6) R is called a ring with identity if there isanelement 16 Oin Rsuchthatl:a a1 aforalla2R.

8.2. Examples of rings.

(1) Z;Q; R; C are rings (commutative rings with identity).

(2) For any integer n 1, Z, is a ring under addition and multiplication mod n .

(3) For any integer n 1, if R is a ring, then the set of N N matrices M, R is a ring under the usual
operations.

(4) The Gaussiﬁrlintegers Zd-, fa bija;b2Zzg.

(5) ThesetQ 2 fa b 2ja;b2Qqg.

(6) The ring of real quaternions

RH fa bi cj dkjayb;c;d2R;i? j? K2 1;ij kjk iki jo

Week 9 — Lecture 20 — Monday 10th May 2010.

8.3. Properties of rings.

(1) ca a0 Oforalla2R.
2a b ab ab forall a;b 2 R.
3 a b ab forall a;b 2 R.

8.4. Homomorphisms.

Definition 8.2. Let R and R’ be rings. A function :R I RCis a ring homomorphism if

0] a b a b
(i) ab a b
forall a;b 2 R.

The homomorphism is called an isomorphism if itis 1 1 and onto.

The kernel of s ker fa2Rj a Og.
Note: The homomorphism is1 1 if and only if ker fOg.

8.5. Subrings.

Definition 8.3. A subring S of aring R is a subset of R that is itself a ring.

Thus S is a subring of R if S; < R; and if S is closed under multiplication.

In particular, if :R ¥ R’isaringhomomorphismthen R andker are subrings of R’ and R respectively.

9. Integral Domains and Fields

9.1. Definitions.

Definition 9.1. Let R be a ring with identity 1. A unit of R is an element u that has a multiplicative inverse
ulsSouu?l! ulu 1

If every non-zero element of R is a unit then R is called a field when R is commutative, or a skewfield or division
ring when R is not commutative.
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Thus when R isafield, R; and RnTf0g; are both abelian groups.

Definition 9.2. Let R be a ring. Non-zero elements a; b of R such that ab 0 are called zero-divisors.

The ring Z (N > 1) has no zero-divisors if and only if n is prime.

Definition 9.3. An integral domain is a commutative ring with identity which has no zero-divisors.

Examples:
(1) Zis an integral domain.
(2) If p is prime, Z, is an integral domain.
(3) If nis composite, Z, is not an integral domain.
(4) Every field is an integral domain.
Theorem 9.4. Every finite integral domain is a field.

Corollary 9.5. If p is a prime, then Z, is a field.

Week 9 — Lecture 21 — Tuesday 11th May 2010.

9.2. The field of quotients of an integral domain. Let D be an integral domain. Then we can construct a field
F containing D as follows:

Let
S fab 2D Djb6 0g:

Define an equivalence relation on S by
a;b c;d ifad bc:
Let F be the set of equivalence classes under this relation:
F f ab ja,b2D;b6 0g:

Define operations of addition and multiplication on F by
ab c:d ad Dbc;bd
and
ab c:d ac; bd
Then F is a field under these operations and F contains an integral domain
D f al1 ja22Dg
which is isomorphic to D. We usually say that D  F.

The field F is called the field of quotients of D. This field is the smallest field containing D, and is unique up
to isomorphism.

10. Polynomials

10.1. Basic operations. Let R be a ring. We denote by R x the set of all polynomials in x with coe [ciehts in
R. Here x is an ‘indeterminate’, not a variable or element of R.

Thus 8 g

i ap aiXx a2x2 20 aj 2 R; only a finite number of aj non-zero . :

The degree of the polynomial ¥ x is the largest i such that a; 6 0. It is conventional to say that the zero
polynomial O has degree 1.
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10.1.1. Addition and multiplication of polynomials. If

f x ap aix apx?
g X by bix byx?
then
fx gx ap, bog a; b x ay by x?
and

o fxgx do dix dyx?
where dj J' 0ajbi j. Note that with these definitions,
degf x g x degf x degg X

and
deg f X g x maxfdegf X ;degg X g:
Under these operations, R x is a ring.

If R is commutative, so is R x . If R has an identity 1, so has R x .
R X1;X2;::7:Xn R X1;X2;::7:Xn 1 Xn .

degf x g x degf x degg x :

If F is a field, then F x is an integral domain but not a field.

Week 10 — Lecture 22 — Monday 17th May 2010.

10.2.1. The division algorithm.

Lemma 10.1 (Division algorithm for Z). Let m and n be integers with m 6 0. Then there are unique integers
g and r such that

n gm r
and0 r <m.

Lemma 10.2 (Division algorithm for F x ). LetF be afieldand f X ;g X be polynomialsinF x withg x 6
0. Then there are unique polynomialsq x andr X inF x such that

f X g X qxX r x

and degr X <degg X .

Note thatg x jf x ifandonlyifr x 0.

10.3. Polynomial functions. Let R be aring and ¥ x ap ax apx? a polynomial over R. Then
the function ¥ :R ¥ Rgivenby f r ap ar apr? is called the polynomial function associated to
f.

The set P R of all polynomial functions over R is a ring under the operations f gr fr gr and

fg r f r :g r . Itis then easy to show that

f g f g fg fg
If R is a commutative ring with identity then so is P R , but note that P R is not necessarily isomorphic to
R x .
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10.3.1. Zeros of polynomials. Let F be a field.
Definition 10.3. Anelementa2F isazeroof f x 2F x iff a 0.
Theorem 10.4 (Factor Theorem). Theelementa2F isazeroof f x 2F x ifandonlyifx ajf x.

Corollary 10.5. A polynomial of degree n over a field F has at most n zeros in F.

Week 10 — Lecture 23 — Tuesday 18th May 2010.

Definition 10.6. A non-constant polynomial ¥ x 2 F X is irreducible over F if

f X 6 g x h x forany polynomials g x ;h x of degree less than ¥ x .

11. Ideals

11.1. Introduction.

Definition 11.1. A subring | of aring R is called an ideal of R if forallr 2 Rand i 2 | we have ir 2 | and
ri2l.

11.2. The Factor Ring.

Theorem 11.2 (The Factor Ring). Let | be an ideal of the ring R. Then the set R=I of all cosets of | in R is a ring
under the operations

If R is a commutative ring, or a ring with identity, then so is R=I.
Lemma 11.3. Let :R ¥ S be aring homomorphism. Then ker is an ideal of R.

Theorem 11.4 (Homomorphism Theorem). If :R ¥ S is a ring homomorphism then

R=ker ~ R :

Week 10 — Lecture 24 — Thursday 20th May 2010.

Lemma 11.5. If | and J are ideals of R thensoarel JandI\J.
Theorem 11.6 (Isomorphism Theorem).
(i) Let | be an ideal of R. Then thereisal 1 correspondence between subrings S of R containing | and

subrings S=I of R=Il. Here S is an ideal of R if and only if S=I is an ideal of R=I.
(i) Letl J R withl and J ideals of R. Then

R=J * R=l =J=I :
(iii) Let 1 and J be ideals of R. Then
I J=371=1I\J:

11.3. Ideals in commutative rings with identity. Let R be a commutative ring with identity.

Definition 11.7. An ideal of the form hai far jr 2 Rg is called a principal ideal of R.

An ideal M of R is called a maximal ideal if there isno ideal | of R suchthatM | R.

Theorem 11.8. Let R be a commutative ring with identity. Then M is a maximal ideal of R if and only if R=M
is a field.



12. Factorization in Integral Domains

12.1. Irreducibles and associates.

Definition 12.1. An element c of an integral domain, not zero or a unit, is called
irreducible if, whenever ¢ df, one of d or T is a unit.

Elements ¢ and d are called associates if c  du for a unit u.

12.2. Euclidean domains.
Definition 12.2. A Euclidean domain is an integral domain D together with a function :D
i a ab for all non-zero a;b 2 D
(ii) forall a;b 2 D; b 6 0 there exist q;r 2 D such that
a bg r

with eitherr Oor r < b:

The function is called a Euclidean valuation.

Examples:
1) Zzwith n  jnj.
2) F x with F x deg f x , where F is a field.

17

T N satisfying

Week 11 — Lecture 25 — Monday 24th May 2010.

Note 12.1. (a) fa2D then 1 a.
(b) fu22D then u 1 ifand only if u is a unit.

12.3. The integral domains Z Iod .

12.3.1. The Gaussian integers. This is the integral domain
Zi fm nijm;n2Zg

with m ni m?2 nZandi 1 as usual. Then is a Euclidean valuation.

12.3.2. The general case. If d 2 Z we define
P— P—
Z d fa b dja;b2Zg:

This is an integral domain, a subdomain of C. We normally take d 6 0;1 and d squarefree.

The normin Z pa is the function N : Z pd T N given by

pP—
Na bd ja? db?j:

Theorem 12.3. InZ pa ,

(i) N x O if and ?my ifx O

(i) forallx;y 2Z d ,N xy N XNy

(iii) x isaunitifand only if N x 1 p_
(iv) if N x is prime, then X is irreducibleinZz ~ d .

.. . . . P . .
Note that N is in some cases, but not in all cases, a Euclﬁjean valuation, so for some d, Z d is a Euclidean

domain with valuation N. There are also cases where Z ~ d is a Euclidean domain with a di Cerent valuation.
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12.4. Principal ideal domains.
Definition 12.4. An integral domain D is a principal ideal domain (PID) if every ideal of D is principal.

Theorem 12.5. Every Euclidean domain is a PID.

Examples:
(1) Z is an ED and hence a PID.
(2) IfFisafield, F x is an ED, and hence a PID.
(3) The Gaussian integers Z i is a PID.
(4) The domain Z x is not a PID. (Consider the ideal h2; xi 2Z x XZ x )

Week 11 — Lecture 26 — Tuesday 25th May 2010.

13. Unique Factorization Domains

13.1. Definitions.
Definition 13.1. An integral domain D is called a unique factorization domain (UFD) if for every a 2 D, not
Zero or a unit,

(i) a ci1c2:::cn forirreducibles c;
(i) ifa ciCo:iich  didz:::dm with ci;dj all irreducible then n m and the d; can be renumbered
such that each c; is an associate of dj.

13.2. Irreducibility tests for polynomials.

Lemma 13.2. Let F be a field. If f x 2 F x has degree 2 or 3 then ¥ x is reducible over F if and only if
f X hasazeroinF.

Theorem 13.3 (Eisenstein’s criterion). Let ¥ X ag a1Xx i apx"2zx.
Suppose that there is a prime p such that

() pGan
(i) pjajfori 0;1;:::;n 1
(iii) p? Gao:

Then apart from a constant factor £ X is irreducible over Z.

13.3. Irreducibles and primes.

Definition 13.4. Let a;b elements of an integral domain D. If a 0 we say that a dividesb (ajb)ifb ac
for some c 2 D.

Lemma 13.5. Let D be an integral domain. Then
(a) ajbifandonlyifhai hbi.

(b) hai D if and only if a is a unit.
(c) hai hbi if and only if a and b are associates.

Definition 13.6. An element p of an integral domain D, not zero or a unit, is called prime if whenever pjab
for a;b 2 D, either pja or pjb.

Week 12 — Lecture 27 — Monday 31st May 2010.

Lemma 13.7. Every prime in an integral domain is irreducible.

Theorem 13.8. Let D be an integral domain. Then D is a UFD if and only if



19

(i) for every a 2 D, not zero or a unit, a c1C2:::cn for irreducibles c;
(ii) every irreducible in D is prime.

Theorem 13.9. Every PID is a UFD.

Week 12 — Lecture 28 — Tuesday 1st June 2010.

Lemma 13.10. Let D be a PID and let a1; ap; as;::: be a sequence of elements of D such that for each i; a; 1ja;.
Then for some N, an, is an associate of ay for all n > N.

13.4. Polynomial rings as UFDs.
Theorem 13.11. If Disa UFD thensoisD x .

Hence, in particular, Z x ;F X;y ;F X;y;z are UFDs.

13.5. Relationships between classes of rings.
ED PID UFD ID Commutative rings with identity:

Examples:
EDs ZF x:Z1i:Z p§
PIDs which are not EDs 2 2 19jm;n2Zzg
UFDs which are not PIDs Z 6 Z x;¥) F Xy
IDs which are not UFDs Z 5:;Z 10

Commutative rings with 1 which are not IDs Zy; M composite.



