School of Mathematical Sciences PURE MTH 3007
 Groups and Rings III, Semester 1, 2010
 Outline of the course

Week 1 - Lecture 1 - Monday 1 March 2010.

1. Introduction (Background from Algebra ii)

1.1. Groups and Subgroups.

Definition 1.1. A binary operation on a set G is a function $G \times G \rightarrow G$ often written just as juxtoposition, i.e $(x, y) \mapsto x y$.
Definition 1.2. A group is a set G with a binary operation $G \times G \rightarrow G,(x, y) \mapsto x y$, a function $G \rightarrow G, x \mapsto x^{-1}$ called the inverse and an element $e \in G$ called the identity satisfying:
(a) $(x y) z=x(y z) \quad \forall x, y, z, \in G$
(b) $e x=x=x e \quad \forall x \in G$, and
(c) $x x^{-1}=e=x^{-1} x \quad \forall x \in G$.

Definition 1.3. Let G be a group.
(a) For $x, y \in G$ we say that x and y commute if $x y=y x$.
(b) If every x, y in G commute we call G an abelian group.

Proposition 1.4. (Basic properties of groups).
(a) The identity is unique. That is if $f \in G$ and $f x=x=x f$ for all $x \in G$ then $f=e$.
(b) If $x \in G$ then x^{-1} is unique. That is if $x y=e=y x$ then $y=x^{-1}$.
(c) Any bracketing of a multiple product $x_{1} x_{2} \cdots x_{n}$ gives the same outcome so no bracketing is necessary.
(d) Cancellation laws hold. That is if $a x=a y$ then $x=y$ and if $x a=y a$ then $x=y$.

Definition 1.5. If $H \subset G$ we say that H is a subgroup of G if:
(a) $\forall x, y \in H$ we have $x y \in H$,
(b) $\forall x \in H$ we have $x^{-1} \in H$ and
(c) $e \in H$.

Note 1.1. If H is a subgroup of G we write $H<G$. If $H<G$ and $H \neq G$ we say that H is a proper subgroup of G.

Note 1.2. A subgroup is a group.
Proposition 1.6. (Properties of subgroups)
(a) If $H \subset G$ then H is a subgroup if and only if $H \neq \varnothing$ and for all $x, y \in H$ we have $x y^{-1} \in H$.
(b) $\langle e\rangle<G$ and $G<G$.
(c) If H and K are subgroups of G then $H \cap K$ is a subgroup of G.

Week 1 - Lecture 2 - Tuesday 2nd March 2010.

Note 1.3. Sometimes it is useful to draw the subgroup lattice of a group G. This is a directed graph whose nodes are the subgroups of G with H and H^{\prime} joined by a directed edge if $H<H^{\prime}$. We usually draw this vertically with G at the top and $\langle e\rangle$ at the bottom. If we have $H<H^{\prime}<H^{\prime \prime}$ then we obviously have $H<H^{\prime \prime}$ but we usually omit that edge to stop the graph becoming too complicated.

Definition 1.7. If G is a group and has a finite number of elements we call it a finite group. The number of elements is called the order of G and denoted $|G|$. If G is not a finite group we call it an infinite group and say it has infinite order.

If $G=\left\{x_{1}, \ldots, x_{n}\right\}$ is a finite group the multiplication table of G is formed from all the products:

	x_{1}	x_{2}	\cdots	x_{n}
x_{1}	$x_{1} x_{1}$	$x_{1} x_{2}$	\cdots	$x_{1} x_{n}$
x_{2}	$x_{2} x_{1}$	$x_{2} x_{2}$	\cdots	$x_{2} x_{n}$
\vdots	\vdots	\vdots	\ddots	\vdots
x_{n}	$x_{n} x_{1}$	$x_{n} x_{2}$	\cdots	$x_{n} x_{n}$

Note 1.4. If $x \in G$ then we write $x^{0}=e, x^{k}=x x \cdots x$ where there are $k x^{\prime}$ s in the product and $x^{-k}=\left(x^{-1}\right)^{k}$.
Definition 1.8. If G is a group and $x \in G$ we say that x has order n if n is the smallest non-negative integer for which $x^{n}=e$. We denote the order of x by $|x|$. If $x^{n} \neq e$ for all n we say that x has infinite order.

Definition 1.9. If G is a group and $X \subset G$ we define $\langle X\rangle$ to be the smallest subgroup of G containing X and called it the subgroup generated by X.

Note 1.5. If $X \subset G$ then $\langle X\rangle$ consists of all arbitrary products of elements of X with arbitrary integer powers.
Definition 1.10. If G is a group with $X \subset G$ and $\langle X\rangle=G$ we say that X generates G. If X is finite we say that G is finitely generated.

Definition 1.11. If G is a group which is generated by one element $x \in G$ we call G cyclic.
Note 1.6. Cyclic groups are abelian.
Theorem 1.12. Any subgroup of a cyclic group is cyclic.
Note 1.7. If $G \simeq\langle x\rangle$ has finite order n then the subgroups of G are exactly the subsets $\left\langle x^{d}\right\rangle$ where $d \mid n$. If $G=\langle x\rangle$ is infinite then each $\left\langle x^{d}\right\rangle$ is a subroup for $d=1,2, \ldots$

1.2. Examples of Groups.

(1) The integers \mathbb{Z}, the rationals \mathbb{Q}, the real numbers \mathbb{R}, and the complex numbers \mathbb{C} are all abelian groups under addition.
(2) The sets of $n \times n$ matrices, $M_{n}(\mathbb{Z}), M_{n}(\mathbb{Q}), M_{n}(\mathbb{R})$ and $M_{n}(\mathbb{C})$ are abelian groups under matrix addition.
(3) $\mathbb{Z}^{\times}=\mathbb{Z}-\{0\}$ is not a group under multiplication but $\mathbb{Q}^{\times}, \mathbb{R}^{\times}$and \mathbb{C}^{\times}are.
(4) $G L(n, \mathbb{R})$ the set of all invertible matrices in $M_{n}(\mathbb{R})$ is a group as is $G L(n, \mathbb{C})$.

Example 1.1. (The quaternion group.) Let $\mathbb{H}=\{ \pm 1, \pm i, \pm j, \pm k\}$ and define the multiplication by letting the identity be 1 and assuming that -1 commutes with everything else and that also

$$
i j=-j i=k, j k=-k j=i, k i=-i k=j, i^{2}=j^{2}=k^{2}=-1 \quad \text { and } \quad i j k=-1
$$

This group $\mathbb{\Vdash}$ is called the quaternion group. It is not abelian and has order 8 .

Week 2 - Lecture 3 - Tuesday 9th March 2010.

Example 1.2. (Integers modulo n.) Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ and define a binary operation on it by using addition modulo n. That is we add x and y to get $x+y$ and then calculate the remainder modulo n. This makes \mathbb{Z}_{n} into an abelian group which is cyclic and generated by 1 .

Proposition 1.13. The set $\mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p}-\{0\}$ is a group under multiplication if and only if p is prime.
Definition 1.14. A field is a set \mathbb{F} with two binary operations + , such that
(a) $(\mathbb{F},+)$ is an abelian group
(b) $\left(\mathbb{F}^{\times}, \cdot\right)$ is an abelian group, where $\mathbb{F}^{\times}=\mathbb{F} \backslash\{0\}$
(c) $a(b+c)=a b+a c$ for all $a, b, c \in \mathbb{F}$.

Some examples of fields are $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ where p is prime. The latter example is also denoted $G F(p)$.
1.2.1. Matrix groups. The set $G L(n, \mathbb{F})$ of all invertible $n \times n$ matrices over a field \mathbb{F} is a group under matrix multiplication.

Some subgroups of $G L(n, \mathbb{F})$ are $S L(n, \mathbb{F})$, scalar matrices and diagonal matrices. We denote $G L\left(n, \mathbb{Z}_{p}\right)$ also by $G F(n, p)$.

1.2.2. Permutation groups.

Definition 1.15. A permutation on n letters is a $1-1$, onto function from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$.
For a given n, the set of all these forms a group S_{n} under composition of functions called the symmetric group on n letters.

Recall

(1) I will use composition of functions so if $\alpha, \beta \in S_{n}$ then $\alpha \beta$ is defined by $\alpha \beta(k)=\alpha(\beta(k))$.
(2) $\left|S_{n}\right|=n$!
(3) Each element of S_{n} can be written as a product of disjoint cycles. This decomposition is unique up to the order of writing the cycles.
(4) The group S_{n} is not abelian if $n \geq 3$.
(5) A transposition is a cycle of length 2. Every permutation can be written as a product of transpositions.
(6) A permutation is called even or odd according to whether it is the product of an even or odd number of transpositions. The set of all even permutations in S_{n} is a group, the alternating group A_{n} on n letters, and $\left|A_{n}\right|=\frac{n!}{2}$.
(7) A cycle of even length is an odd permutation and a cycle of odd length is an even permutation.

Week 2 - Lecture 4 - Thursday 11th March 2010.

Definition 1.16. A permutation group of degree n is a subgroup of S_{n}.
1.2.3. Symmetry groups. The symmetries of the square form a group of order 8 , the dihedral group D_{4}. Similarly, the symmetries of the regular n-gon form a group of order $2 n$, the nth dihedral group D_{n}. Clearly $D_{n}<S_{n}$, so D_{4} is another example of a permutation group of degree 4 .

1.3. Isomorphism.

Definition 1.17. Two groups G and H are called isomorphic if there is a $1-1$, onto function $\phi: G \rightarrow H$ such that for all $x, y \in G$ we have $\phi(x y)=\phi(x) \phi(y)$.
Note 1.8. We call such a ϕ an isomorphism. If G and H are isomorphic, we write $G \simeq H$.
Proposition 1.18. Assume that $\phi: G \rightarrow H$ is an isomorphism and that $x \in G$. Denote the identities of G and H by e_{G} and e_{H}. Then
(a) $\phi\left(e_{G}\right)=e_{H}$.
(b) $\phi\left(x^{-1}\right)=(\phi(x))^{-1}$
(c) $|G|=|H|$
(d) Either x and $\phi(x)$ are both of infinite order or they have equal finite order.
(e) If G is abelian so is H.

2. Cosets and Normal Subgroups

2.1. Cosets.

Definition 2.1. Let $H<G$. A left coset of H in G is a set of the form

$$
x H=\{x h \mid h \in H\}
$$

where x is an element of G. Similarly, a right coset is a set of the form

$$
H x=\{h x \mid h \in H\} .
$$

Proposition 2.2. Let $H<G$. Then
(a) $|g H|=|H|=|H g|$.
(b) If $x, y \in G$ then either $x^{-1} y \in H$ and $x H=y H$ or $x^{-1} y \notin H$ and $x H \cap y H=\varnothing$.
(c) If x, y inG then either $y x^{-1} \in H$ and $H x=H y$ or $y x^{-1} \notin H$ and $x H x \cap H y=\varnothing$.
(d) Every element of G is in exactly one left coset of H and exactly one right coset of H.
(e) G is the disjoint union of the left (or right) cosets of H.

Week 3 - Lecture 5 - Monday 15th March 2010.

Definition 2.3. If $H<G$, the index of H in G is the number of distinct left cosets of H in G. It is denoted ($G: H$).

Theorem 2.4. (Lagrange's Theorem) If H is a subgroup of a finite group G then

$$
(G: H)=\frac{|G|}{|H|}
$$

and thus $|H|$ divides $|G|$.
Corollary 2.5. If x is an element of the finite group G, then $|x|$ divides $|G|$.
Corollary 2.6. Every group of prime order is cyclic.
2.2. Normal subgroups. If $H<G$ and $g \in G$, the left coset $g H$ and the right coset $H g$ are in general not the same set. For example, consider $G=S_{3}=\{1,(12),(13),(23),(123),(132)\}$ and the subgroup $H=\{1,(12)\}$.

Left cosets of H	Right cosets of H
$1 H=\{1,(12)\}$	$H 1=\{1,(12)\}$
(12) $H=\{(12), 1\}$	$H(12)=\{(12), 1\}$
(13) $H=\left\{(13),\left(\begin{array}{l}1 \\ 2\end{array} 3\right)\right\}$	$H(13)=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$
(2 3) $H=\left\{\left(\begin{array}{l}2\end{array}\right),\left(\begin{array}{lll}1 & 2\end{array}\right)\right\}$	$H(23)=\left\{\left(\begin{array}{l}3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$
(123) $H=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$	$H(123)=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2\end{array}\right)\right\}$
(13 2) $H=\left\{\left(\begin{array}{lll}1 & 2\end{array}\right),\left(\begin{array}{ll}2\end{array}\right)\right\}$	$H\left(\begin{array}{lll}1 & 2\end{array}\right)=\left\{\left(\begin{array}{lll}1 & 3\end{array}\right),\left(\begin{array}{lll}1\end{array}\right)\right\}$

Compare this example with what we get when we consider the subgroup $A_{3}=\{1,(123),(132)\}$:

Left cosets of A_{3}	Right cosets of A_{3}
$1 A_{3}=\left\{1,\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2\end{array}\right)\right\}$	$A_{3} 1=\left\{1,(123),\left(\begin{array}{ll}13\end{array}\right)\right\}$
(12) $A_{3}=\{(12),(23),(13)\}$	$A_{3}(12)=\left\{(12),\left(\begin{array}{l}13\end{array}\right),\left(\begin{array}{l}2\end{array}\right)\right\}$
(13) $A_{3}=\left\{(13),(12),\left(\begin{array}{l}2\end{array}\right)\right\}$	$A_{3}(13)=\left\{(13),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{l}12)\end{array}\right.\right.$
(2 3) $A_{3}=\{(23),(13),(12)\}$	$A_{3}(23)=\{(23),(12),(13)\}$
$(123) A_{3}=\left\{\left(\begin{array}{lll}1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2\end{array}\right), 1\right\}$	$A_{3}(123)=\left\{\left(\begin{array}{ll}12 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right), 1\right\}$
$(132) A_{3}=\left\{\left(\begin{array}{lll}1 & 2\end{array}\right), 1,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$	$A_{3}(132)=\left\{\left(\begin{array}{lll}1 & 3\end{array}\right), 1,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$

We see that $g A_{3}=A_{3} g$ for every $g \in A_{3}$.
Definition 2.7. A subgroup H of a group G is normal if for all $g \in G, \mathrm{gHg}^{-1}=H$.

We write $H \triangleleft G$. Equivalently, $H \triangleleft G$ if $g H=H g$ for all $g \in G$.
Note 2.1. We saw in the above examples that $\{1,(12)\} \notin S_{3}$ and $A_{3} \triangleleft S_{3}$.

Proposition 2.8.

(a) Whenever $(G: H)=2, H \triangleleft G$. In particular, $A_{n} \triangleleft S_{n}$ for $n=3,4,5, \ldots$.
(b) Every subgroup of an abelian group is normal.
(c) $\{1\} \triangleleft G$ and $G \triangleleft G$.
(d) If $H \triangleleft G$ and $K \triangleleft G$ then $H \cap K \triangleleft G$.
(e) If $N \triangleleft G$ and $N<H<G$ then $N \triangleleft H$.

2.3. Conjugation.

Definition 2.9. Let $g \in G$ and let $X \subset G$. Then the subset $g X g^{-1}$ is called a conjugate of X in G. In particular, if $x \in G$, then the element $g x g^{-1}$ is called a conjugate of x (in G).

Week 3 - Lecture 6 - Tuesday 16th March 2010.

Note 2.2.
(1) A conjugate of x has the same order as x. (Assignment 1)
(2) We say that x is conjugate to y if y is a conjugate of x, ie if there is some $g \in G$ with $y=g x g^{-1}$.

Proposition 2.10. Conjugacy is an equivalence relation on G.
Note 2.3. The equivalence class of x is called the conjugacy class of x and denoted $[x]$. The conjugacy classes partition G :

$$
G=[1] \cup[x] \cup \ldots \cup[z] .
$$

2.3.1. Centralizer.

Definition 2.11. The centralizer $C_{G}(x)$ of x in G is the subgroup consisting of all elements of G that commute with x.

Thus, $C_{G}(x)=\{g \in G \mid g x=x g\}=\left\{g \in G \mid g x g^{-1}=x\right\}$.
Note 2.4.
(1) $\langle x\rangle<C_{G}(x)$.
(2) If G is abelian, then $C_{G}(x)=G$.

Proposition 2.12. If $x \in G$ a finite group then $|[x]|=\left(G: C_{G}(x)\right)$.

2.3.2. Centre.

Definition 2.13. The centre $Z(G)$ of a group G is the subgroup of G consisting of all elements $x \in G$ that commute with every elements of G.

Thus, $Z(G)=\{x \in G \mid x g=g x$ for all $g \in G\}$.

Note:

(1) $Z(G) \triangleleft G$.
(2) $Z(G)=G$ if and only if G is abelian.
(3) $x \in Z(G)$ if and only if $[x]=\{x\}$, or equivalently $|[x]|=1$.

2.3.3. Simple groups.

Definition 2.14. A group G is called simple if G has no proper non-trivial normal subgroups.

Week 4 - Lecture 7 - Monday 22nd March 2010.

Theorem 2.15. An abelian simple group G with $|G|>1$ must be isomorphic to C_{p} for some prime p.
Definition 2.16. A group of order p^{n}, where p is prime, is called a p-group.
Lemma 2.17. Let P be a p-group of order $p^{n}, n \geq 1$. Then $Z(P) \neq\langle e\rangle$. Thus P is not simple unless $n=1$, that is $P \simeq C_{p}$.
2.3.4. Conjugates of a subgroup, and the normalizer. If $H<G$, the conjugates of H are the subgroups gHg^{-1}, for $g \in G$.

Definition 2.18. The normalizer of a subgroup H of G is the subgroup

$$
N_{G}(H)=\left\{g \in G \mid g H g^{-1}=H\right\} .
$$

Note 2.5. $N_{G}(H)$ is the largest subgroup of G in which H is normal. That is if $H \triangleleft N_{G}(H)$, and if $H \triangleleft K<G$ then $K<N_{G}(H)$.

Proposition 2.19. If H is a subgroup of a finite group G then the number of distinct conjugates of H in G equals $\left(G: N_{G}(H)\right)$.

3. Homomorphisms and Factor Groups

3.1. Homomorphisms.

Definition 3.1. If G and H are groups, a homomorphism from G to H is a function $f: G \rightarrow H$ such that

$$
f(x y)=f(x) f(y)
$$

for all $x, y \in G$.

Week 4 - Lecture 8 - Tuesday 23rd March 2010.

Proposition 3.2. If $f: G \rightarrow H$ is a homomorphism, then
(1) $f(e)=e$.
(2) $f\left(g^{-1}\right)=(f(g))^{-1}$.
(3) The image of $f, \operatorname{im}(f)=f(G)=\{f(g) \mid g \in G\}$, is a subgroup of H.
(4) The kernel of f, $\operatorname{ker} f=\{g \in G \mid f(g)=e\}$, is a normal subgroup of G.
(5) A homomorphism f is one to one if and only if $\operatorname{ker} f=\langle e\rangle$. So f is an isomorphism if and only if $\operatorname{ker} f=\{e\}$ and $\operatorname{im}(f)=H$.

Proposition 3.3. Let $f: G \rightarrow H$ be a homomorphism of groups. If $K \subset G$ define $f(K)=\{f(k) \mid k \in K\} \subset H$ and if $L \subset H$ define $f^{-1}(L)=\{g \in G \mid f(g) \in L\} \subset G$. We have:
(a) If $K<G$ then $f(K)<H$.
(b) If $L<H$ then $f^{-1}(L)<G$.
(c) If $K \triangleleft G$ and f is onto then $f(K) \triangleleft H$.
(d) If $L \triangleleft H$ then $f^{-1}(L) \triangleleft G$.
3.2. The factor group. Let $N \triangleleft G$. Consider the set

$$
G / N=\{g N \mid g \in G\}
$$

of left cosets of N in G. This set is a group under the operation

$$
g N h N=(g h) N .
$$

This group is called the factor or quotient group of G by N. Its order is $|G| /|N|=(G: N)$.
Theorem 3.4. (Homomorphism Theorem) Let $f: G \rightarrow H$ be a homomorphism. Then the groups $G /$ ker f and $f(G)$ are isomorphic.

Theorem 3.5. Let $N \triangleleft G$. Then the function $f: G \rightarrow G / N$ given by $f(g)=g N$ is a homomorphism with kernel N.

Week 4 - Lecture 9 - Thursday 25th March 2010.

3.3. Related results.

Lemma 3.6. Let G be a group such that $G / Z(G)$ is cyclic. Then G is abelian.
Corollary 3.7. $G / Z(G)$ cannot be cyclic of order greater than one.
Lemma 3.8. Every group of order p^{2} is abelian.
Theorem 3.9. Let $N \triangleleft G$. Then there is a 1-1 correspondence between subgroups of G containing N and subgroups of G / N, namely

$$
\text { if } N<H<G \text { then } H \leftrightarrow H / N
$$

Every subgroup of G / N is of form H / N for some subgroup H of G containing N.
Also, $H \triangleleft G$ if and only if $H / N \triangleleft G / N$.

3.4. Composition series.

Definition 3.10. Let $N \triangleleft G$. Then N is called a maximal normal subgroup of G if the only normal subgroup of G that properly contains N is G itself.

Then N is a maximal normal subgroup of G if and only if G / N is simple.
Definition 3.11. A composition series of a group G is a sequence of subgroups

$$
\{e\}=N_{k+1} \triangleleft N_{k} \triangleleft \ldots \triangleleft N_{2} \triangleleft N_{1} \triangleleft N_{0}=G
$$

such that each N_{i+1} is a maximal normal subgroup of N_{i}. That is, each factor group N_{i} / N_{i+1} is simple.
Theorem 3.12. The Jordan-Hölder Theorem states that for any composition series, the number of factors k and the set of factor groups $\left\{N_{i} / N_{i+1} \mid i=0,1, \ldots, k\right\}$ is unique.
3.5. The derived group. Let X be a subset of G. Then $H=\langle X\rangle$ denotes the smallest subgroup of G containing X. We say that H is generated by X. Then H is the set of all products of the form $x_{i}^{n_{i}} \ldots x_{j}^{n_{j}}$, where $x_{i}, \ldots, x_{j} \in X$ and $n_{i}, \ldots, n_{j} \in \mathbb{Z}$.
Definition 3.13. The commutator of the elements $g, h \in G$ is $[g, h]=g h g^{-1} h^{-1}$. The derived group or commutator subgroup of G is the group

$$
G^{\prime}=[G, G]=\langle[g, h] \mid g, h \in G\rangle
$$

Week 5 - Lecture 10 - Monday 29th March 2010.

Note 3.1.
(1) Elements g and h commute if and only if $[g, h]=e$.
(2) $[g, h]^{-1}=[h, g]$.
(3) $G^{\prime}=\{e\}$ if and only if G is abelian.

Proposition 3.14. Let G be a group and G^{\prime} its commutator subgroup. Then:
(a) $G^{\prime} \triangleleft G$.
(b) G / G^{\prime} is abelian.
(c) If $N \triangleleft G$ and G / N is abelian, then $G^{\prime}<N$. Thus G^{\prime} is the smallest normal subgroup of G with abelian factor group.

4. Products of Groups

4.1. The isomorphism theorem. Let H and K be subgroups of the group G. We define

$$
H K=\{h k \mid h \in H, k \in K\} .
$$

Then $H K<G$ if and only if $H K=K H$.

In particular, if $H \triangleleft G$ or $K \triangleleft G$ then $H K<G$.
If $H K<G$, then

$$
|H K|=\frac{|H||K|}{|H \cap K|} .
$$

Theorem 4.1. (The Isomorphism Theorem) Let H and K be subgroups of G with $H \triangleleft G$. Then $H K / H \simeq K / H \cap K$.

Week 5 - Lecture 11 - Tuesday 30th March 2010.

4.2. Direct products of groups. Let H and K be groups. Then we can make the cartesian product

$$
H \times K=\{(h, k) \mid h \in H, k \in K\}
$$

into a group, called the (external) direct product of H and K, by defining

$$
(h, k) \cdot\left(h^{\prime}, k^{\prime}\right)=\left(h h^{\prime}, k k^{\prime}\right)
$$

for all $h, h^{\prime} \in H, k, k^{\prime} \in K$. Then $H \times K$ has subgroups

$$
\begin{aligned}
H_{0} & =\{(h, e) \mid h \in H\} \simeq H, \\
K_{0} & =\{(e, k) \mid k \in K\} \simeq K .
\end{aligned}
$$

Proposition 4.2. Let H and K be groups as above. Then:
(1) $H_{0} \cap K_{0}=\{(e, e)\}=\{e\}$.
(2) For all $h \in H, k \in K$ we have $(h, e) \cdot(e, k)=(h, k)=(e, k) \cdot(h, e)$. Hence $G=H_{0} K_{0}$.
(3) We write (h, e) as h and (e, k) as k, and identify H_{0} and K_{0} with H and K. Then every $g \in G$ can be written uniquely as $g=h k$ for $h \in H, k \in K$.
(4) $H \triangleleft G$ and $K \triangleleft G$.
(5) $|G|=|H \times K|=|H| .|K|$.
(6) $G / H \simeq K$ and $G / K \simeq H$.

4.3. The internal direct product.

Definition 4.3. A group G is decomposable if it is isomorphic to a direct product of two proper non-trivial subgroups. Otherwise G is indecomposable.

If G is decomposable then G has subgroups H and K such that
(i) $H \cap K=\{e\}$
(ii) $G=H K$
(iii) $h k=k h$ for all $h \in H, k \in K$.

Then we write $G=H \times K$ and say that G is the (internal) direct product of H and K.
Equivalently, if (iii)' is the statement:
(iii) ${ }^{\prime} H \triangleleft G$ and $K \triangleleft G$
then (i), (ii) and (iii)' imply that $G=H \times K$.

Week 5 - Lecture 12 - Tuesday 30th March 2010.

5. Finitely generated abelian groups

5.1. The fundamental theorem.

Definition 5.1. A group G is finitely generated if there is some finite subset X of G such that $G=\langle X\rangle$.
Thus $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$, the set of all finite products of the x_{i} s and their inverses.
Definition 5.2. If every element of a group G has finite order then G is called a torsion group. If only the identity e has finite order then G is called a torsion-free group. If G is an abelian group, then the subgroup of G consisting of all elements of finite order is called the torsion subgroup of G and denoted $\operatorname{Tor}(G)$.

Theorem 5.3. (Fundamental Theorem of Finitely Generated Abelian Groups) Every finitely generated abelian group is isomorphic to a direct product of cyclic groups of the form

$$
C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{s}} \times C_{\infty} \times \ldots \times C_{\infty},
$$

where each $n_{i}=p_{i}^{a_{i}}$ for some prime p_{i} and $a_{i} \in \mathbb{N}$. (The p_{i} need not be distinct.)

Note:

(1) The torsion subgroup of G is $\operatorname{Tor}(G)=C_{n_{1}} \times C_{n_{2}} \times \ldots \times C_{n_{s}}$. Thus $|T|=n_{1} n_{2} \ldots n_{s}$.
(2) The group $F=\underbrace{C_{\infty} \times \ldots \times C_{\infty}}_{f \text { factors }}$ is torsion free. (It is called a free abelian group of rank f.) The number of factors f is the (free) rank or Betti number of G. G is finite if and only if $f=0$.
(3) Since $C_{n} \times C_{m} \simeq C_{n m}$ if m and n are coprime, we can also write

$$
T \simeq C_{d_{1}} \times \ldots \times C_{d_{t}}
$$

where $d_{1}\left|d_{2}\right| \ldots \mid d_{t}$ and $|T|=d_{1} d_{2} \ldots d_{t}$. The d_{i}, known as the torsion invariants of G, are unique.
(4) Two finitely generated abelian groups are isomorphic if and only if they have the same free rank and the same torsion invariants.

Week 6 - Lecture 13 - Monday 19th April 2010.

Corollary 5.4. The indecomposable finite abelian groups are precisely the cyclic groups of order p^{a}, where p is prime, $a \in \mathbb{N}$.

Corollary 5.5. If G is a finite abelian group and m divides $|G|$ then G has a subgroup of order m.
5.2. Generators and relations for abelian groups. Suppose that an abelian group is defined by generators $x_{1}, x_{2}, \ldots, x_{m}$ and a number of relations of the form

$$
\begin{gathered}
x_{1}^{n_{11}} x_{2}^{n_{21}} \ldots x_{m}^{n_{m 1}}=e \\
x_{1}^{n_{12}} x_{2}^{n_{22} \ldots x_{m}^{n_{m 2}}=} \begin{array}{c}
\\
\vdots \\
\\
x_{1}^{n_{1 n}} x_{2}^{n_{2 n}} \ldots x_{m}^{n_{m n}}= \\
\end{array} .
\end{gathered}
$$

We also know that $\left[x_{i}, x_{j}\right]=e$ for all i, j as G is abelian.

Week 6 - Lecture 14 - Tuesday 20th April 2010.

To determine the rank and torsion invariants of G we use the following procedure.
Write the exponents $n_{i j}$ in a matrix N, with the j th relation corresponding to the j th column. There must be at least as many columns as rows, so we have an $m \times n$ matrix with $n \geq m$. (If not, add columns of zeros to make $n \geq m$).

We then use certain row and column operations to reduce N to a diagonal matrix in which the diagonal entries are $d_{1}, \ldots, d_{t}, 0, \ldots, 0$ and the successive non-zero entries divide one another: $d_{1}\left|d_{2}\right| \ldots \mid d_{t}$. Then the entries $d_{1}, \ldots d_{t}$ are the torsion invariants of G and the number of zeros is the rank of G.

5.2.1. Permissible row and column operations.

(i) Interchange any two rows: $R_{i}, R_{j} \leadsto R_{j}, R_{i}$.
(ii) Multiply any row by $-1: R_{i} \leadsto-R_{i}$.
(iii) Add to any row an integer multiple of another row: $R_{i} \leadsto R_{i}+c R_{j}, c \in \mathbb{Z}$.

The corresponding column operations are also permitted.
It is not permissible to:
(i) Multiply a row by c, if $c \neq \pm 1$.
(ii) Replace R_{i} by $c R_{i}+d R_{j}$, if $c \neq \pm 1$.
5.2.2. Why does it work? Row operations correspond to changing the generators, column operations to manipulating the relations. Specifically, the row operation $R_{i} \leadsto R_{i}+c R_{j}$ corresponds to replacing generator x_{j} by $y_{j}=x_{j} x_{i}^{-c}$.
5.2.3. Procedure. The initial aim is to get the g.c.d. of all entries in the matrix to the $(1,1)$ position, and then use this entry as a pivot to eliminate all other entries in the first row and column. Then repeat this procedure on the $(m-1) \times(n-1)$ submatrix obtained by removing the first row and column. Continue.

To get the g.c.d. to the $(1,1)$ position, it will in general be necessary to use the Division Algorithm several times on the rows and/or columns, as in the following examples:

$$
\begin{gathered}
{\left[\begin{array}{cc}
7 & \ldots \\
30 & \ldots
\end{array}\right] \sim\left[\begin{array}{cc}
7 & \ldots \\
2 & \ldots
\end{array}\right]\left(R_{2} \leadsto R_{2}-4 R_{1}\right) \sim\left[\begin{array}{cc}
1 & \ldots \\
2 & \ldots
\end{array}\right]\left(R_{1} \leadsto R_{1}-3 R_{2}\right) .} \\
{\left[\begin{array}{cc}
15 & 0 \\
0 & 20
\end{array}\right] \sim\left[\begin{array}{cc}
15 & 0 \\
20 & 20
\end{array}\right] \sim\left[\begin{array}{cc}
15 & 0 \\
5 & 20
\end{array}\right] \sim\left[\begin{array}{cc}
5 & 20 \\
15 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
5 & 0 \\
0 & -60
\end{array}\right] \sim\left[\begin{array}{cc}
5 & 0 \\
0 & 60
\end{array}\right] .}
\end{gathered}
$$

6. Groups Acting on Sets

6.1. Introduction.

Definition 6.1. Let G be a group and X a set. An action of G on X is a map $G \times X \rightarrow X,(g, x) \mapsto g * x$ such that
(i) for each $g_{1}, g_{2} \in G$ and $x \in X$,

$$
\left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right)
$$

(ii) for each $x \in X, e * x=x$.

If there is no confusion, we may write $g x$ for $g * x$.

Note:
(1) S_{n} acts on $X=\{1,2, \ldots, n\}$.
(2) G acts on $X=G$ by
(a) conjugation: $g * x=g x g^{-1}$
(b) left multiplication: $g * x=g x$.
(3) If $H<G, G$ acts on the left cosets of H by left multiplication: $g * x H=g x H$.
(4) If $G=G L(n, F)$ and V is a vector space of dimension n over F, then G acts on V by matrix multiplication. Definition 6.2. If G acts on X then for any $x \in X,[x]=\{g * x \mid g \in G\}$ is called an orbit in X of the action. If there is only one orbit then we say G is transitive on X.

Week 6 - Lecture 15 - Thursday 22nd April 2010.

Proposition 6.3. The orbits of a group G acting on a set X are the equivalence classes under the equivalence relation on X :

$$
x \sim y \text { if and only if } y=g * x \text { for some } g \in G
$$

Hence X is the disjoint union of the distinct orbits.
Definition 6.4. If G acts on X then for any $x \in X$, the stabilizer of $x \in X$ is

$$
S_{G}(x)=\{g \in G \mid g * x=x\} .
$$

The stabilizer of x is a subgroup of G. It is sometimes called the isotropy subgroup of x, and sometimes denoted G_{x}.

6.2. The Orbit-Stabilizer Theorem.

Theorem 6.5. (Orbit-Stabilizer Theorem) Let G act on X. Then for any $x \in X$,

$$
|[x]|=\left(G: S_{G}(x)\right)
$$

Week 7 - Lecture 16 - Tuesday 27th April 2010.

6.3. Burnside's Theorem.

Theorem 6.6. (Burnside's Theorem) Let G be a finite group and X a finite set such that G acts on X. Let r be the number of distinct orbits of G on X and for each $g \in G$ let

$$
X_{g}=\{x \in X \mid g * x=x\}
$$

the set of all elements in X fixed by g. Then

$$
r|G|=\sum_{g \in G}\left|X_{g}\right|
$$

6.3.1. Application of Burnside's theorem to chemistry.

Week 8 - Lecture 17 - Monday 3rd May 2010.

6.4. Cayley's Theorem.

Theorem 6.7. (Cayley's Theorem) Every group is isomorphic to a group of permutations.

7. The Sylow Theorems

7.1. Sylow's first theorem. The results of this chapter are due to the Norwegian mathematician Ludvig Sylow (1832-1918), though the proofs have been modernized. Along with Lagrange's theorem, they are the most important results of finite group theory - Lagrange's theorem gives a necessary condition for subgroups, and Sylow's theorems give sufficient conditions.

Theorem 7.1. Sylow's First Theorem Let G be a finite group of order $p^{m} r$, where p is a prime and r is coprime to p. Then G has a subgroup P of order p^{m}.

Such a subgroup P, the existence of which is guaranteed by this theorem, is called a Sylow p-subgroup of G.
Lemma 7.2. Let G be a finite p-group acting on the finite set X. Let

$$
F=\{x \in X \mid g * x=x \text { for all } g \in G\}
$$

Then $|F| \equiv|X|(\bmod p)$.

Week 8 - Lecture 18 - Tuesday 4th May 2010.

7.2. Sylow's second and third theorems.

Theorem 7.3. (Sylow's Second Theorem) Let P be a Sylow p-subgroup of the finite group G of order $p^{m} r$, where r is coprime to p. If Q is any p-subgroup of G (that is, $|Q|$ is a power of p) then $Q<g P g^{-1}$ for some $g \in G$.

In particular, all Sylow p-subgroups are conjugate.
Lemma 7.4. (i) Let P be a Sylow p-subgroup of G and suppose $P \triangleleft G$. Then P is the only Sylow p-subgroup of G.
(ii) In any finite group G, P is the only Sylow p-subgroup of $N_{G}(P)$.

Theorem 7.5. (Sylow's Third Theorem) Let P be a Sylow p-subgroup of G. Then the number of Sylow p subgroups of G is $\left(G: N_{G}(P)\right)$. Further, $\left(G: N_{G}(P)\right) \equiv 1(\bmod p)$.
Theorem 7.6. (Cauchy's Theorem) Let p divide $|G|$. Then G contains an element of order p.
Corollary 7.7. If p divides $|G|$ then G has a subgroup of order p.

Week 8 - Lecture 19 - Thursday 6th May 2010.

7.3. Examples. We consider the structure of groups of order $p q$, where p and q are distinct odd primes, groups of order $2 p$ where p is prime and groups of order less than or equal to 15 .

8. RINGS

8.1. Definitions.

Definition 8.1. A ring is a set R with two binary operations + , • such that
(i) $(R,+)$ is an abelian group
(ii) $a(b c)=(a b) c$ for all $a, b, c \in R$ (Associative law for multiplication)
(iii) $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$ (Distributive laws).

Notes:

(1) As usual, we often omit \cdot and write $a b$ instead of $a \cdot b$.
(2) (R, \cdot) is not necessarily a group - why?
(3) The additive identity of $(R,+)$ is denoted 0 . Thus $a+0=0+a=a$ for all $a \in R$.
(4) The additive inverse of $(R,+)$ is denoted $-a$. Thus $a+(-a)=(-a)+a=0$ for all $a \in R$.
(5) R is called a commutative ring if $a b=b a$ for all $a, b \in R$.
(6) R is called a ring with identity if there is an element $1 \neq 0$ in R such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$.

8.2. Examples of rings.

(1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are rings (commutative rings with identity).
(2) For any integer $n \geq 1, \mathbb{Z}_{n}$ is a ring under addition and multiplication $(\bmod n)$.
(3) For any integer $n \geq 1$, if R is a ring, then the set of $n \times n$ matrices $M_{n}(R)$ is a ring under the usual operations.
(4) The Gaussian integers $\mathbb{Z}(i)=\{a+b i \mid a, b \in \mathbb{Z}\}$.
(5) The set $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.
(6) The ring of real quaternions

$$
\mathbb{R}(\mathbb{H})=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j\right\} .
$$

Week 9 - Lecture 20 - Monday 10th May 2010.

8.3. Properties of rings.

(1) $0 . a=a .0=0$ for all $a \in R$.
(2) $a(-b)=(-a) b=-a b$ for all $a, b \in R$.
(3) $(-a)(-b)=a b$ for all $a, b \in R$.

8.4. Homomorphisms.

Definition 8.2. Let R and R^{\prime} be rings. A function $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism if
(i) $\phi(a+b)=\phi(a)+\phi(b)$
(ii) $\phi(a b)=\phi(a) \phi(b)$
for all $a, b \in R$.
The homomorphism ϕ is called an isomorphism if it is $1-1$ and onto.
The kernel of ϕ is $\operatorname{ker} \phi=\{a \in R \mid \phi(a)=0\}$.

Note: The homomorphism ϕ is $1-1$ if and only if $\operatorname{ker} \phi=\{0\}$.

8.5. Subrings.

Definition 8.3. A subring S of a ring R is a subset of R that is itself a ring.

Thus S is a subring of R if $(S,+)<(R,+)$ and if S is closed under multiplication.
In particular, if $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism then $\phi(R)$ and ker ϕ are subrings of R^{\prime} and R respectively.

9. Integral Domains and Fields

9.1. Definitions.

Definition 9.1. Let R be a ring with identity 1. A unit of R is an element u that has a multiplicative inverse u^{-1}. So, $u u^{-1}=u^{-1} u=1$.

If every non-zero element of R is a unit then R is called a field when R is commutative, or a skewfield or division ring when R is not commutative.

Thus when R is a field, $(R,+)$ and $(R \backslash\{0\}, \cdot)$ are both abelian groups.
Definition 9.2. Let R be a ring. Non-zero elements a, b of R such that $a b=0$ are called zero-divisors.

The ring $\mathbb{Z}_{n}(n>1)$ has no zero-divisors if and only if n is prime.
Definition 9.3. An integral domain is a commutative ring with identity which has no zero-divisors.

Examples:

(1) \mathbb{Z} is an integral domain.
(2) If p is prime, \mathbb{Z}_{p} is an integral domain.
(3) If n is composite, Z_{n} is not an integral domain.
(4) Every field is an integral domain.

Theorem 9.4. Every finite integral domain is a field.
Corollary 9.5. If p is a prime, then \mathbb{Z}_{p} is a field.

Week 9 - Lecture 21 - Tuesday 11th May 2010.

9.2. The field of quotients of an integral domain. Let D be an integral domain. Then we can construct a field F containing D as follows:

Let

$$
S=\{(a, b) \in D \times D \mid b \neq 0\}
$$

Define an equivalence relation on S by

$$
(a, b) \sim(c, d) \text { if } a d=b c
$$

Let F be the set of equivalence classes under this relation:

$$
F=\{[(a, b)] \mid a, b \in D, b \neq 0\}
$$

Define operations of addition and multiplication on F by

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]
$$

and

$$
[(a, b)] \cdot[(c, d)]=[(a c, b d)]
$$

Then F is a field under these operations and F contains an integral domain

$$
\bar{D}=\{[(a, 1)] \mid a \in D\}
$$

which is isomorphic to D. We usually say that $D \subset F$.
The field F is called the field of quotients of D. This field is the smallest field containing D, and is unique up to isomorphism.

10. Polynomials

10.1. Basic operations. Let R be a ring. We denote by $R[x]$ the set of all polynomials in x with coefficients in R. Here x is an 'indeterminate', not a variable or element of R.

Thus

$$
R[x]=\left\{\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \mid a_{i} \in R, \text { only a finite number of } a_{i} \text { non-zero }\right\}
$$

The degree of the polynomial $f(x)$ is the largest i such that $a_{i} \neq 0$. It is conventional to say that the zero polynomial 0 has degree $-\infty$.
10.1.1. Addition and multiplication of polynomials. If

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots
\end{aligned}
$$

then

$$
f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\ldots
$$

and

$$
f(x) g(x)=d_{0}+d_{1} x+d_{2} x^{2}+\ldots
$$

where $d_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}$. Note that with these definitions,

$$
\operatorname{deg} f(x) g(x) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)
$$

and

$$
\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\} .
$$

Under these operations, $R[x]$ is a ring.
If R is commutative, so is $R[x]$. If R has an identity 1 , so has $R[x]$.
More generally, we can define the polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ by

$$
R\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]\right)\left[x_{n}\right] .
$$

10.2. Polynomials over an integral domain and field. If D is an integral domain, so is $D[x]$ and hence so is $D\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. In this case

$$
\operatorname{deg} f(x) g(x)=\operatorname{deg} f(x)+\operatorname{deg} g(x) .
$$

If F is a field, then $F[x]$ is an integral domain but not a field.

Week 10 - Lecture 22 - Monday 17th May 2010.

10.2.1. The division algorithm.

Lemma 10.1 (Division algorithm for \mathbb{Z}). Let m and n be integers with $m \neq 0$. Then there are unique integers q and r such that

$$
n=q m+r
$$

and $0 \leq r<m$.
Lemma 10.2 (Division algorithm for $F[x]$). Let F be a field and $f(x), g(x)$ be polynomials in $F[x]$ with $g(x) \neq$ 0 . Then there are unique polynomials $q(x)$ and $r(x)$ in $F[x]$ such that

$$
f(x)=g(x) q(x)+r(x)
$$

and $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
Note that $g(x) \mid f(x)$ if and only if $r(x)=0$.
10.3. Polynomial functions. Let R be a ring and $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ a polynomial over R. Then the function $\bar{f}: R \rightarrow R$ given by $\bar{f}(r)=a_{0}+a_{1} r+a_{2} r^{2}+\cdots$ is called the polynomial function associated to f.

The set $\mathcal{P}(R)$ of all polynomial functions over R is a ring under the operations $(\bar{f}+\bar{g})(r)=\bar{f}(r)+\bar{g}(r)$ and $(\overline{f g})(r)=\bar{f}(r) \cdot \bar{g}(r)$. It is then easy to show that

$$
\bar{f}+\bar{g}=\overline{f+g}, \quad \bar{f} \bar{g}=\overline{f g} .
$$

If R is a commutative ring with identity then so is $\mathcal{P}(R)$, but note that $\mathcal{P}(R)$ is not necessarily isomorphic to $R[x]$.
10.3.1. Zeros of polynomials. Let F be a field.

Definition 10.3. An element $a \in F$ is a zero of $f(x) \in F[x]$ if $\bar{f}(a)=0$.
Theorem 10.4 (Factor Theorem). The element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $x-a \mid f(x)$.
Corollary 10.5. A polynomial of degree n over a field F has at most n zeros in F.

Week 10 - Lecture 23 - Tuesday 18th May 2010.
Definition 10.6. A non-constant polynomial $f(x) \in F[x]$ is irreducible over F if $f(x) \neq g(x) h(x)$ for any polynomials $g(x), h(x)$ of degree less than $f(x)$.

11. IDEALS

11.1. Introduction.

Definition 11.1. A subring I of a ring R is called an ideal of R if for all $r \in R$ and $i \in I$ we have ir $\in I$ and $r i \in I$.

11.2. The Factor Ring.

Theorem 11.2 (The Factor Ring). Let I be an ideal of the ring R. Then the set R / I of all cosets of I in R is a ring under the operations

$$
\begin{aligned}
(r+I)+(s+I) & =(r+s)+I \\
(r+I) \cdot(s+I) & =r s+I .
\end{aligned}
$$

If R is a commutative ring, or a ring with identity, then so is R / I.
Lemma 11.3. Let $\phi: R \rightarrow S$ be a ring homomorphism. Then ker ϕ is an ideal of R.
Theorem 11.4 (Homomorphism Theorem). If $\phi: R \rightarrow S$ is a ring homomorphism then

$$
R / \operatorname{ker} \phi \simeq \phi(R)
$$

Week 10 - Lecture 24 - Thursday 20th May 2010.

Lemma 11.5. If I and J are ideals of R then so are $I+J$ and $I \cap J$.
Theorem 11.6 (Isomorphism Theorem).
(i) Let I be an ideal of R. Then there is a $1-1$ correspondence between subrings S of R containing I and subrings S / I of R / I. Here S is an ideal of R if and only if S / I is an ideal of R / I.
(ii) Let $I \subset J \subset R$ with I and J ideals of R. Then

$$
R / J \simeq(R / I) /(J / I)
$$

(iii) Let I and J be ideals of R. Then

$$
(I+J) / J \simeq I /(I \cap J)
$$

11.3. Ideals in commutative rings with identity. Let R be a commutative ring with identity.

Definition 11.7. An ideal of the form $\langle a\rangle=\{\operatorname{ar} \mid r \in R\}$ is called a principal ideal of R.
An ideal M of R is called a maximal ideal if there is no ideal I of R such that $M \subset I \subset R$.
Theorem 11.8. Let R be a commutative ring with identity. Then M is a maximal ideal of R if and only if R / M is a field.

12. FACTORIZATION IN INTEGRAL DOMAINS

12.1. Irreducibles and associates.

Definition 12.1. An element c of an integral domain, not zero or a unit, is called irreducible if, whenever $c=d f$, one of d or f is a unit.

Elements c and d are called associates if $c=d u$ for a unit u.

12.2. Euclidean domains.

Definition 12.2. A Euclidean domain is an integral domain D together with a function $\delta: D^{*} \rightarrow \mathbb{N}$ satisfying
(i) $\delta(a) \leq \delta(a b)$ for all non-zero $a, b \in D$
(ii) for all $a, b \in D, b \neq 0$ there exist $q, r \in D$ such that

$$
a=b q+r
$$

with either $r=0$ or $\delta(r)<\delta(b)$.
The function δ is called a Euclidean valuation.

Examples:

(1) \mathbb{Z} with $\delta(n)=|n|$.
(2) $F[x]$ with $\delta(f(x))=\operatorname{deg} f(x)$, where F is a field.

Week 11 - Lecture 25 - Monday 24th May 2010.

Note 12.1. (a) If $a \in D^{*}$ then $\delta(1) \leq \delta(a)$.
(b) If $u \in D^{*}$ then $\delta(u)=\delta(1)$ if and only if u is a unit.
12.3. The integral domains $\mathbb{Z}(\sqrt{d})$.
12.3.1. The Gaussian integers. This is the integral domain

$$
\mathbb{Z}(i)=\{m+n i \mid m, n \in \mathbb{Z}\}
$$

with $\delta(m+n i)=m^{2}+n^{2}$ and $i=-1$ as usual. Then δ is a Euclidean valuation.

12.3.2. The general case. If $d \in \mathbb{Z}$ we define

$$
\mathbb{Z}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\} .
$$

This is an integral domain, a subdomain of \mathbb{C}. We normally take $d \neq 0,1$ and d squarefree.
The norm in $\mathbb{Z}(\sqrt{d})$ is the function $N: \mathbb{Z}(\sqrt{d}) \rightarrow \mathbb{N}$ given by

$$
N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|
$$

Theorem 12.3. In $\mathbb{Z}(\sqrt{d})$,
(i) $N(x)=0$ if and only if $x=0$
(ii) for all $x, y \in \mathbb{Z}(\sqrt{d}), N(x y)=N(x) N(y)$
(iii) x is a unit if and only if $N(x)=1$
(iv) if $N(x)$ is prime, then x is irreducible in $\mathbb{Z}(\sqrt{d})$.

Note that N is in some cases, but not in all cases, a Euclidean valuation, so for some $d, \mathbb{Z}(\sqrt{d})$ is a Euclidean domain with valuation N. There are also cases where $\mathbb{Z}(\sqrt{d})$ is a Euclidean domain with a different valuation.

12.4. Principal ideal domains.

Definition 12.4. An integral domain D is a principal ideal domain (PID) if every ideal of D is principal.
Theorem 12.5. Every Euclidean domain is a PID.

Examples:

(1) \mathbb{Z} is an ED and hence a PID.
(2) If F is a field, $F[x]$ is an ED, and hence a PID.
(3) The Gaussian integers $\mathbb{Z}(i)$ is a PID.
(4) The domain $\mathbb{Z}[x]$ is not a PID. (Consider the ideal $\langle 2, x\rangle=2 \mathbb{Z}[x]+x \mathbb{Z}[x]$.)

Week 11 - Lecture 26 - Tuesday 25th May 2010.

13. UniQue Factorization Domains

13.1. Definitions.

Definition 13.1. An integral domain D is called a unique factorization domain (UFD) if for every $a \in D$, not zero or a unit,
(i) $a=c_{1} c_{2} \ldots c_{n}$ for irreducibles c_{i}
(ii) if $a=c_{1} c_{2} \ldots c_{n}=d_{1} d_{2} \ldots d_{m}$ with c_{i}, d_{j} all irreducible then $n=m$ and the d_{i} can be renumbered such that each c_{i} is an associate of d_{i}.

13.2. Irreducibility tests for polynomials.

Lemma 13.2. Let F be a field. If $f(x) \in F[x]$ has degree 2 or 3 then $f(x)$ is reducible over F if and only if $f(x)$ has a zero in F.
Theorem 13.3 (Eisenstein's criterion). Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$.
Suppose that there is a prime p such that
(i) $p \ a_{n}$
(ii) $p \mid a_{i}$ for $i=0,1, \ldots, n-1$
(iii) $p^{2} \backslash a_{0}$.

Then apart from a constant factor $f(x)$ is irreducible over \mathbb{Z}.

13.3. Irreducibles and primes.

Definition 13.4. Let a, b elements of an integral domain D. If $a \neq 0$ we say that a divides $b(a \mid b)$ if $b=a c$ for some $c \in D$.

Lemma 13.5. Let D be an integral domain. Then
(a) $a \mid b$ if and only if $\langle a\rangle \supseteq\langle b\rangle$.
(b) $\langle a\rangle=D$ if and only if a is a unit.
(c) $\langle a\rangle=\langle b\rangle$ if and only if a and b are associates.

Definition 13.6. An element p of an integral domain D, not zero or a unit, is called prime if whenever $p \mid a b$ for $a, b \in D$, either $p \mid a$ or $p \mid b$.

Week 12 - Lecture 27 - Monday 31st May 2010.
Lemma 13.7. Every prime in an integral domain is irreducible.
Theorem 13.8. Let D be an integral domain. Then D is a UFD if and only if
(i) for every $a \in D$, not zero or a unit, $a=c_{1} c_{2} \ldots c_{n}$ for irreducibles c_{i}
(ii) every irreducible in D is prime.

Theorem 13.9. Every PID is a UFD.

Week 12 - Lecture 28 - Tuesday 1st June 2010.

Lemma 13.10. Let D be a PID and let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of elements of D such that for each $i, a_{i+1} \mid a_{i}$. Then for some N, a_{n} is an associate of a_{N} for all $n>N$.

13.4. Polynomial rings as UFDs.

Theorem 13.11. If D is a UFD then so is $D[x]$.
Corollary 13.12. If D is a UFD so also is $D\left[x_{1}, \ldots, x_{n}\right]$.

Hence, in particular, $\mathbb{Z}[x], F[x, y], F[x, y, z]$ are UFDs.

13.5. Relationships between classes of rings.

$$
E D \subset P I D \subset U F D \subset I D \subset \text { Commutative rings with identity. }
$$

Examples:

EDs
$\mathbb{Z}, F[x], \mathbb{Z}(i), \mathbb{Z}(\sqrt{2})$
PIDs which are not EDs
$\left\{\left.\frac{m}{2}+\frac{n}{2} \sqrt{-19} \right\rvert\, m, n \in \mathbb{Z}\right\}$
UFDs which are not PIDs
$\mathbb{Z}[x], \mathbb{Z}[x, y], F[x, y]$
IDs which are not UFDs
Commutative rings with 1 which are not IDs
$\mathbb{Z}(\sqrt{-5}), \mathbb{Z}(\sqrt{10})$
\mathbb{Z}_{m}, m composite.

