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1. Introduction (Background from Algebra II)

1.1. Groups and Subgroups.

Definition 1.1. A binary operation on a set G is a function G �G ! G often written just as juxtoposition, i.e
�x;y�, xy .

Definition 1.2. A group is a set G with a binary operation G�G ! G, �x;y�, xy , a function G ! G, x , x�1

called the inverse and an element e 2 G called the identity satisfying:

(a) �xy�z � x�yz� 8x;y; z;2 G
(b) ex � x � xe 8x 2 G, and
(c) xx�1 � e � x�1x 8x 2 G.

Definition 1.3. Let G be a group.

(a) For x;y 2 G we say that x and y commute if xy � yx.
(b) If every x;y in G commute we call G an abelian group.

Proposition 1.4. (Basic properties of groups).

(a) The identity is unique. That is if f 2 G and fx � x � xf for all x 2 G then f � e.
(b) If x 2 G then x�1 is unique. That is if xy � e � yx then y � x�1.
(c) Any bracketing of a multiple product x1x2 � � �xn gives the same outcome so no bracketing is necessary.
(d) Cancellation laws hold. That is if ax � ay then x � y and if xa � ya then x � y .

Definition 1.5. If H � G we say that H is a subgroup of G if:

(a) 8x;y 2 H we have xy 2 H,
(b) 8x 2 H we have x�1 2 H and
(c) e 2 H.

Note 1.1. If H is a subgroup of G we write H < G. If H < G and H � G we say that H is a proper subgroup of
G.

Note 1.2. A subgroup is a group.

Proposition 1.6. (Properties of subgroups)

(a) If H � G then H is a subgroup if and only if H �; and for all x;y 2 H we have xy�1 2 H.
(b) hei < G and G < G.
(c) If H and K are subgroups of G then H \K is a subgroup of G.
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Note 1.3. Sometimes it is useful to draw the subgroup lattice of a group G. This is a directed graph whose
nodes are the subgroups of G with H and H0 joined by a directed edge if H < H0. We usually draw this
vertically with G at the top and hei at the bottom. If we have H < H0 < H00 then we obviously have H < H00
but we usually omit that edge to stop the graph becoming too complicated.

Definition 1.7. If G is a group and has a finite number of elements we call it a finite group. The number of
elements is called the order of G and denoted jGj. If G is not a finite group we call it an infinite group and
say it has infinite order.
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If G � fx1; : : : ; xng is a finite group the multiplication table of G is formed from all the products:

x1 x2 � � � xn

x1 x1x1 x1x2 � � � x1xn
x2 x2x1 x2x2 � � � x2xn
...

...
...

. . .
...

xn xnx1 xnx2 � � � xnxn

Note 1.4. If x 2 G then we write x0 � e, xk � xx � � �x where there are k x’s in the product and x�k � �x�1�k.

Definition 1.8. If G is a group and x 2 G we say that x has order n if n is the smallest non-negative integer
for which xn � e. We denote the order of x by jxj. If xn � e for all n we say that x has infinite order.

Definition 1.9. If G is a group and X � G we define hXi to be the smallest subgroup of G containing X and
called it the subgroup generated by X.

Note 1.5. If X � G then hXi consists of all arbitrary products of elements of X with arbitrary integer powers.

Definition 1.10. If G is a group with X � G and hXi � G we say that X generates G. If X is finite we say that
G is finitely generated.

Definition 1.11. If G is a group which is generated by one element x 2 G we call G cyclic.

Note 1.6. Cyclic groups are abelian.

Theorem 1.12. Any subgroup of a cyclic group is cyclic.

Note 1.7. If G ’ hxi has finite order n then the subgroups of G are exactly the subsets hxdi where djn. If
G � hxi is infinite then each hxdi is a subroup for d � 1;2; : : : .

1.2. Examples of Groups.

(1) The integers Z, the rationals Q, the real numbers R, and the complex numbers C are all abelian groups
under addition.

(2) The sets ofn�nmatrices,Mn�Z�,Mn�Q�,Mn�R� andMn�C� are abelian groups under matrix addition.
(3) Z� � Z� f0g is not a group under multiplication but Q�, R� and C� are.
(4) GL�n;R� the set of all invertible matrices in Mn�R� is a group as is GL�n;C�.

Example 1.1. (The quaternion group.) Let H � f�1;�i;�j;�kg and define the multiplication by letting the
identity be 1 and assuming that �1 commutes with everything else and that also

ij � �ji � k; jk � �kj � i; ki � �ik � j; i2 � j2 � k2 � �1 and ijk � �1:

This group H is called the quaternion group. It is not abelian and has order 8.
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Example 1.2. (Integers modulo n.) Define Zn � f0;1;2; : : : ; n�1g and define a binary operation on it by using
addition modulo n. That is we add x and y to get x � y and then calculate the remainder modulo n. This
makes Zn into an abelian group which is cyclic and generated by 1.

Proposition 1.13. The set Z�p � Zp � f0g is a group under multiplication if and only if p is prime.

Definition 1.14. A field is a set F with two binary operations �; � such that

(a) �F;�� is an abelian group
(b) �F�; �� is an abelian group, where F� � F n f0g
(c) a�b � c� � ab � ac for all a;b; c 2 F.

Some examples of fields are Q;R;C;Zp where p is prime. The latter example is also denoted GF�p�.
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1.2.1. Matrix groups. The set GL�n;F� of all invertible n� n matrices over a field F is a group under matrix
multiplication.

Some subgroups of GL�n;F� are SL�n;F�, scalar matrices and diagonal matrices. We denote GL�n;Zp� also
by GF�n;p�.

1.2.2. Permutation groups.

Definition 1.15. A permutation on n letters is a 1� 1, onto function from f1;2; : : : ; ng to f1;2; : : : ; ng.

For a given n, the set of all these forms a group Sn under composition of functions called the symmetric group
on n letters.

Recall

(1) I will use composition of functions so if �;� 2 Sn then �� is defined by ���k� � ����k��.
(2) jSnj � n!
(3) Each element of Sn can be written as a product of disjoint cycles. This decomposition is unique up to

the order of writing the cycles.
(4) The group Sn is not abelian if n � 3.
(5) A transposition is a cycle of length 2. Every permutation can be written as a product of transpositions.
(6) A permutation is called even or odd according to whether it is the product of an even or odd number

of transpositions. The set of all even permutations in Sn is a group, the alternating group An on n
letters, and jAnj � n!

2 .
(7) A cycle of even length is an odd permutation and a cycle of odd length is an even permutation.
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Definition 1.16. A permutation group of degree n is a subgroup of Sn.

1.2.3. Symmetry groups. The symmetries of the square form a group of order 8, the dihedral group D4.
Similarly, the symmetries of the regular n-gon form a group of order 2n, the nth dihedral group Dn. Clearly
Dn < Sn, so D4 is another example of a permutation group of degree 4.

1.3. Isomorphism.

Definition 1.17. Two groups G and H are called isomorphic if there is a 1� 1, onto function � : G ! H such
that for all x;y 2 G we have ��xy� � ��x���y�.
Note 1.8. We call such a � an isomorphism. If G and H are isomorphic, we write G ’ H.

Proposition 1.18. Assume that � : G ! H is an isomorphism and that x 2 G. Denote the identities of G and H
by eG and eH . Then

(a) ��eG� � eH .
(b) ��x�1� � ���x���1

(c) jGj � jHj
(d) Either x and ��x� are both of infinite order or they have equal finite order.
(e) If G is abelian so is H.

2. Cosets and Normal Subgroups

2.1. Cosets.

Definition 2.1. Let H < G. A left coset of H in G is a set of the form

xH � fxh j h 2 Hg;
where x is an element of G. Similarly, a right coset is a set of the form

Hx � fhx j h 2 Hg:
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Proposition 2.2. Let H < G. Then

(a) jgHj � jHj � jHgj.
(b) If x;y 2 G then either x�1y 2 H and xH � yH or x�1y � H and xH \yH � ;.
(c) If x;y inG then either yx�1 2 H and Hx � Hy or yx�1 � H and xHx \Hy � ;.
(d) Every element of G is in exactly one left coset of H and exactly one right coset of H.
(e) G is the disjoint union of the left (or right) cosets of H.
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Definition 2.3. If H < G, the index of H in G is the number of distinct left cosets of H in G. It is denoted
�G : H�.

Theorem 2.4. (Lagrange’s Theorem) If H is a subgroup of a finite group G then

�G : H� � jGjjHj
and thus jHj divides jGj.

Corollary 2.5. If x is an element of the finite group G, then jxj divides jGj.

Corollary 2.6. Every group of prime order is cyclic.

2.2. Normal subgroups. If H < G and g 2 G, the left coset gH and the right coset Hg are in general not the
same set. For example, consider G � S3 � f1; �12�; �13�; �23�; �123�; �132�g and the subgroupH � f1; �12�g.

Left cosets of H Right cosets of H
1H � f1; �1 2�g H1 � f1; �1 2�g
�1 2�H � f�1 2�;1g H�1 2� � f�1 2�;1g

�1 3�H � f�1 3�; �1 2 3�g H�1 3� � f�1 3�; �1 3 2�g
�2 3�H � f�2 3�; �1 3 2�g H�2 3� � f�2 3�; �1 2 3�g
�1 2 3�H � f�1 2 3�; �1 3�g H�1 2 3� � f�1 2 3�; �2 3�g
�1 3 2�H � f�1 3 2�; �2 3�g H�1 3 2� � f�1 3 2�; �1 3�g

Compare this example with what we get when we consider the subgroup A3 � f1; �1 2 3�; �1 3 2�g:

Left cosets of A3 Right cosets of A3

1A3 � f1; �1 2 3�; �1 3 2�g A31 � f1; �1 2 3�; �1 3 2�g
�1 2�A3 � f�1 2�; �2 3�; �1 3�g A3�1 2� � f�1 2�; �1 3�; �2 3�g
�1 3�A3 � f�1 3�; �1 2�; �2 3�g A3�1 3� � f�1 3�; �2 3�; �1 2�g
�2 3�A3 � f�2 3�; �1 3�; �1 2�g A3�2 3� � f�2 3�; �1 2�; �1 3�g
�1 2 3�A3 � f�1 2 3�; �1 3 2�;1g A3�1 2 3� � f�1 2 3�; �1 3 2�;1g
�1 3 2�A3 � f�1 3 2�;1; �1 2 3�g A3�1 3 2� � f�1 3 2�;1; �1 2 3�g

We see that gA3 � A3 g for every g 2 A3.

Definition 2.7. A subgroup H of a group G is normal if for all g 2 G; gHg�1 � H.

We write H /G. Equivalently, H /G if gH � Hg for all g 2 G.

Note 2.1. We saw in the above examples that f1; �1 2�g 6/S3 and A3 / S3.

Proposition 2.8.

(a) Whenever �G : H� � 2, H /G. In particular, An / Sn for n � 3;4;5; :::.
(b) Every subgroup of an abelian group is normal.
(c) f1g/G and G /G.
(d) If H /G and K /G then H \K /G.
(e) If N /G and N < H < G then N /H.
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2.3. Conjugation.

Definition 2.9. Let g 2 G and let X � G. Then the subset gXg�1 is called a conjugate of X in G. In particular,
if x 2 G, then the element gxg�1 is called a conjugate of x (in G).

Week 3 — Lecture 6 — Tuesday 16th March 2010.

Note 2.2.

(1) A conjugate of x has the same order as x. (Assignment 1)
(2) We say that x is conjugate to y if y is a conjugate of x, ie if there is some g 2 G with y � gxg�1.

Proposition 2.10. Conjugacy is an equivalence relation on G.

Note 2.3. The equivalence class of x is called the conjugacy class of x and denoted �x�. The conjugacy classes
partition G:

G � �1�[ �x�[ :::[ �z�:

2.3.1. Centralizer.

Definition 2.11. The centralizer CG�x� of x in G is the subgroup consisting of all elements of G that commute
with x.

Thus, CG�x� � fg 2 G j gx � xgg � fg 2 G j gxg�1 � xg.

Note 2.4.

(1) hxi < CG�x�.
(2) If G is abelian, then CG�x� � G.

Proposition 2.12. If x 2 G a finite group then j�x�j � �G : CG�x��.

2.3.2. Centre.

Definition 2.13. The centre Z�G� of a group G is the subgroup of G consisting of all elements x 2 G that
commute with every elements of G.

Thus, Z�G� � fx 2 G j xg � gx for all g 2 Gg.

Note:

(1) Z�G� / G.
(2) Z�G� � G if and only if G is abelian.
(3) x 2 Z�G� if and only if �x� � fxg, or equivalently j�x�j � 1.

2.3.3. Simple groups.

Definition 2.14. A group G is called simple if G has no proper non-trivial normal subgroups.

Week 4 — Lecture 7 — Monday 22nd March 2010.

Theorem 2.15. An abelian simple group G with jGj > 1 must be isomorphic to Cp for some prime p.

Definition 2.16. A group of order pn, where p is prime, is called a p-group.

Lemma 2.17. Let P be a p-group of order pn, n � 1. Then Z�P� 6� hei. Thus P is not simple unless n � 1, that
is P ’ Cp.
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2.3.4. Conjugates of a subgroup, and the normalizer. IfH < G, the conjugates ofH are the subgroups gHg�1,
for g 2 G.

Definition 2.18. The normalizer of a subgroup H of G is the subgroup

NG�H� � fg 2 G j gHg�1 � Hg:

Note 2.5. NG�H� is the largest subgroup of G in which H is normal. That is if H /NG�H�, and if H /K < G
then K < NG�H�.

Proposition 2.19. IfH is a subgroup of a finite group G then the number of distinct conjugates ofH in G equals
�G : NG�H��.

3. Homomorphisms and Factor Groups

3.1. Homomorphisms.

Definition 3.1. If G and H are groups, a homomorphism from G to H is a function f : G ! H such that

f�xy� � f�x�f�y�
for all x;y 2 G.
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Proposition 3.2. If f : G ! H is a homomorphism, then

(1) f�e� � e.
(2) f�g�1� � �f �g���1.
(3) The image of f , im�f � � f�G� � ff�g� j g 2 Gg; is a subgroup of H.
(4) The kernel of f , kerf � fg 2 G j f�g� � eg; is a normal subgroup of G.
(5) A homomorphism f is one to one if and only if kerf � hei. So f is an isomorphism if and only if

kerf � feg and im�f � � H.

Proposition 3.3. Let f : G ! H be a homomorphism of groups. If K � G define f�K� � ff�k� j k 2 Kg � H
and if L � H define f�1�L� � fg 2 G j f�g� 2 Lg � G. We have:

(a) If K < G then f�K� < H.
(b) If L < H then f�1�L� < G.
(c) If K /G and f is onto then f�K� /H.
(d) If L /H then f�1�L� / G.

3.2. The factor group. Let N /G. Consider the set

G=N � fgN j g 2 Gg
of left cosets of N in G. This set is a group under the operation

gNhN � �gh�N:
This group is called the factor or quotient group of G by N . Its order is jGj=jNj � �G : N�.

Theorem 3.4. (Homomorphism Theorem) Let f : G ! H be a homomorphism. Then the groups G=ker f and
f�G� are isomorphic.

Theorem 3.5. Let N /G. Then the function f : G ! G=N given by f�g� � gN is a homomorphism with kernel
N .

Week 4 — Lecture 9 — Thursday 25th March 2010.
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3.3. Related results.

Lemma 3.6. Let G be a group such that G=Z�G� is cyclic. Then G is abelian.

Corollary 3.7. G=Z�G� cannot be cyclic of order greater than one.

Lemma 3.8. Every group of order p2 is abelian.

Theorem 3.9. Let N / G. Then there is a 1-1 correspondence between subgroups of G containing N and
subgroups of G=N , namely

if N < H < G then H $ H=N:
Every subgroup of G=N is of form H=N for some subgroup H of G containing N .

Also, H /G if and only if H=N /G=N .

3.4. Composition series.

Definition 3.10. Let N /G. Then N is called a maximal normal subgroup of G if the only normal subgroup of
G that properly contains N is G itself.

Then N is a maximal normal subgroup of G if and only if G=N is simple.

Definition 3.11. A composition series of a group G is a sequence of subgroups

feg � Nk�1 /Nk / ::: / N2 /N1 /N0 � G;
such that each Ni�1 is a maximal normal subgroup of Ni. That is, each factor group Ni=Ni�1 is simple.

Theorem 3.12. The Jordan-Hölder Theorem states that for any composition series, the number of factors k
and the set of factor groups fNi=Ni�1 j i � 0;1; :::; kg is unique.

3.5. The derived group. Let X be a subset ofG. ThenH � hXi denotes the smallest subgroup ofG containing
X. We say thatH is generated by X. ThenH is the set of all products of the form xnii :::x

nj
j , where xi; :::; xj 2 X

and ni; :::; nj 2 Z.

Definition 3.13. The commutator of the elements g;h 2 G is �g;h� � ghg�1h�1. The derived group or
commutator subgroup of G is the group

G0 � �G;G� � h�g;h� j g;h 2 Gi:

Week 5 — Lecture 10 — Monday 29th March 2010.

Note 3.1.

(1) Elements g and h commute if and only if �g;h� � e.
(2) �g;h��1 � �h; g�.
(3) G0 � feg if and only if G is abelian.

Proposition 3.14. Let G be a group and G0 its commutator subgroup. Then:

(a) G0 /G.
(b) G=G0 is abelian.
(c) If N / G and G=N is abelian, then G0 < N . Thus G0 is the smallest normal subgroup of G with abelian

factor group.

4. Products of Groups

4.1. The isomorphism theorem. Let H and K be subgroups of the group G. We define

HK � fhk j h 2 H;k 2 Kg:

Then HK < G if and only if HK � KH.
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In particular, if H /G or K /G then HK < G.

If HK < G, then

jHKj � jHjjKj
jH \Kj :

Theorem 4.1. (The Isomorphism Theorem) LetH andK be subgroups ofGwithH/G. ThenHK=H ’ K=H\K.

Week 5 — Lecture 11 — Tuesday 30th March 2010.

4.2. Direct products of groups. Let H and K be groups. Then we can make the cartesian product

H �K � f�h; k� j h 2 H;k 2 Kg

into a group, called the (external) direct product of H and K, by defining

�h; k� � �h0; k0� � �hh0; kk0�

for all h;h0 2 H;k; k0 2 K. Then H �K has subgroups

H0 � f�h; e� j h 2 Hg ’ H;
K0 � f�e; k� j k 2 Kg ’ K:

Proposition 4.2. Let H and K be groups as above. Then:

(1) H0 \K0 � f�e; e�g � feg.
(2) For all h 2 H;k 2 K we have �h; e� � �e; k� � �h; k� � �e; k� � �h; e�. Hence G � H0K0.
(3) We write �h; e� as h and �e; k� as k, and identify H0 and K0 with H and K. Then every g 2 G can be

written uniquely as g � hk for h 2 H;k 2 K.
(4) H /G and K /G.
(5) jGj � jH �Kj � jHj:jKj.
(6) G=H ’ K and G=K ’ H.

4.3. The internal direct product.

Definition 4.3. A group G is decomposable if it is isomorphic to a direct product of two proper non-trivial
subgroups. Otherwise G is indecomposable.

If G is decomposable then G has subgroups H and K such that

(i) H \K � feg
(ii) G � HK

(iii) hk � kh for all h 2 H;k 2 K.

Then we write G � H �K and say that G is the (internal) direct product of H and K.

Equivalently, if (iii)0 is the statement:

(iii)0 H /G and K /G

then (i), (ii) and (iii)0 imply that G � H �K.

Week 5 — Lecture 12 — Tuesday 30th March 2010.
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5. Finitely generated abelian groups

5.1. The fundamental theorem.

Definition 5.1. A group G is finitely generated if there is some finite subset X of G such that G � hXi.

Thus G � hx1; :::; xni, the set of all finite products of the xis and their inverses.

Definition 5.2. If every element of a group G has finite order then G is called a torsion group. If only the
identity e has finite order then G is called a torsion-free group. If G is an abelian group, then the subgroup of
G consisting of all elements of finite order is called the torsion subgroup of G and denoted Tor�G�.

Theorem 5.3. (Fundamental Theorem of Finitely Generated Abelian Groups) Every finitely generated abelian
group is isomorphic to a direct product of cyclic groups of the form

Cn1 � Cn2 � :::� Cns � C1 � :::� C1;
where each ni � paii for some prime pi and ai 2 N. (The pi need not be distinct.)

Note:

(1) The torsion subgroup of G is Tor�G� � Cn1 � Cn2 � :::� Cns . Thus jT j � n1n2:::ns .
(2) The group F � C1 � :::� C1| {z }

f factors

is torsion free. (It is called a free abelian group of rank f .) The number

of factors f is the (free) rank or Betti number of G. G is finite if and only if f � 0.
(3) Since Cn � Cm ’ Cnm if m and n are coprime, we can also write

T ’ Cd1 � :::� Cdt
where d1 j d2 j ::: j dt and jT j � d1d2:::dt . The di, known as the torsion invariants of G, are unique.

(4) Two finitely generated abelian groups are isomorphic if and only if they have the same free rank and
the same torsion invariants.

Week 6 — Lecture 13 — Monday 19th April 2010.

Corollary 5.4. The indecomposable finite abelian groups are precisely the cyclic groups of order pa, where p
is prime, a 2 N.

Corollary 5.5. If G is a finite abelian group and m divides jGj then G has a subgroup of order m.

5.2. Generators and relations for abelian groups. Suppose that an abelian group is defined by generators
x1; x2; :::; xm and a number of relations of the form

xn11
1 xn21

2 : : : xnm1
m � e

xn12
1 xn22

2 : : : xnm2
m � e

...
...

xn1n
1 xn2n

2 : : : xnmnm � e:

We also know that �xi; xj� � e for all i; j as G is abelian.

Week 6 — Lecture 14 — Tuesday 20th April 2010.

To determine the rank and torsion invariants of G we use the following procedure.

Write the exponents nij in a matrix N , with the jth relation corresponding to the jth column. There must be
at least as many columns as rows, so we have an m�n matrix with n �m. (If not, add columns of zeros to
make n �m).
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We then use certain row and column operations to reduceN to a diagonal matrix in which the diagonal entries
are d1; :::; dt ;0; :::;0 and the successive non-zero entries divide one another: d1 j d2 j ::: j dt : Then the entries
d1; :::dt are the torsion invariants of G and the number of zeros is the rank of G.

5.2.1. Permissible row and column operations.

(i) Interchange any two rows: Ri; Rj � Rj ; Ri:
(ii) Multiply any row by �1: Ri � �Ri.

(iii) Add to any row an integer multiple of another row: Ri � Ri � cRj ; c 2 Z.

The corresponding column operations are also permitted.

It is not permissible to:

(i) Multiply a row by c, if c 6� �1.
(ii) Replace Ri by cRi � dRj , if c 6� �1.

5.2.2. Why does it work? Row operations correspond to changing the generators, column operations to ma-
nipulating the relations. Specifically, the row operation Ri � Ri � cRj corresponds to replacing generator xj
by yj � xjx�ci .

5.2.3. Procedure. The initial aim is to get the g.c.d. of all entries in the matrix to the �1;1� position, and then
use this entry as a pivot to eliminate all other entries in the first row and column. Then repeat this procedure
on the �m� 1�� �n� 1� submatrix obtained by removing the first row and column. Continue.

To get the g.c.d. to the �1;1� position, it will in general be necessary to use the Division Algorithm several
times on the rows and/or columns, as in the following examples:"

7 : : :
30 : : :

#
�
"

7 : : :
2 : : :

#
�R2 � R2 � 4R1� �

"
1 : : :
2 : : :

#
�R1 � R1 � 3R2�:"

15 0
0 20

#
�
"

15 0
20 20

#
�
"

15 0
5 20

#
�
"

5 20
15 0

#
�
"

5 0
0 �60

#
�
"

5 0
0 60

#
:

6. Groups Acting on Sets

6.1. Introduction.

Definition 6.1. Let G be a group and X a set. An action of G on X is a map G � X ! X , �g;x� , g � x such
that

(i) for each g1; g2 2 G and x 2 X,

�g1g2�� x � g1 � �g2 � x�
(ii) for each x 2 X, e� x � x.

If there is no confusion, we may write gx for g � x.
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Note:

(1) Sn acts on X � f1;2; :::; ng.
(2) G acts on X � G by

(a) conjugation: g � x � gxg�1

(b) left multiplication: g � x � gx.
(3) If H < G, G acts on the left cosets of H by left multiplication: g � xH � gxH.
(4) If G � GL�n; F� and V is a vector space of dimension n over F , then G acts on V by matrix multiplication.

Definition 6.2. If G acts on X then for any x 2 X, �x� � fg � x j g 2 Gg is called an orbit in X of the action.

If there is only one orbit then we say G is transitive on X.

Week 6 — Lecture 15 — Thursday 22nd April 2010.

Proposition 6.3. The orbits of a group G acting on a set X are the equivalence classes under the equivalence
relation on X:

x � y if and only if y � g � x for some g 2 G:

Hence X is the disjoint union of the distinct orbits.

Definition 6.4. If G acts on X then for any x 2 X, the stabilizer of x 2 X is

SG�x� � fg 2 G j g � x � xg:

The stabilizer of x is a subgroup of G. It is sometimes called the isotropy subgroup of x, and sometimes
denoted Gx .

6.2. The Orbit-Stabilizer Theorem.

Theorem 6.5. (Orbit-Stabilizer Theorem) Let G act on X. Then for any x 2 X,

j�x�j � �G : SG�x��:

Week 7 — Lecture 16 — Tuesday 27th April 2010.

6.3. Burnside’s Theorem.

Theorem 6.6. (Burnside’s Theorem) Let G be a finite group and X a finite set such that G acts on X. Let r be
the number of distinct orbits of G on X and for each g 2 G let

Xg � fx 2 X j g � x � xg;
the set of all elements in X fixed by g. Then

r jGj �
X
g2G
jXgj:

6.3.1. Application of Burnside’s theorem to chemistry.

Week 8 — Lecture 17 — Monday 3rd May 2010.

6.4. Cayley’s Theorem.

Theorem 6.7. (Cayley’s Theorem) Every group is isomorphic to a group of permutations.
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7. The Sylow Theorems

7.1. Sylow’s first theorem. The results of this chapter are due to the Norwegian mathematician Ludvig Sylow
(1832 – 1918), though the proofs have been modernized. Along with Lagrange’s theorem, they are the most
important results of finite group theory – Lagrange’s theorem gives a necessary condition for subgroups, and
Sylow’s theorems give sufficient conditions.

Theorem 7.1. Sylow’s First Theorem LetG be a finite group of order pmr , where p is a prime and r is coprime
to p. Then G has a subgroup P of order pm.

Such a subgroup P , the existence of which is guaranteed by this theorem, is called a Sylow p-subgroup of G.

Lemma 7.2. Let G be a finite p-group acting on the finite set X. Let

F � fx 2 X j g � x � x for all g 2 Gg:
Then jFj � jXj �mod p�.

Week 8 — Lecture 18 — Tuesday 4th May 2010.

7.2. Sylow’s second and third theorems.

Theorem 7.3. (Sylow’s Second Theorem) Let P be a Sylow p-subgroup of the finite group G of order pmr ,
where r is coprime to p. If Q is any p-subgroup of G (that is, jQj is a power of p) then Q < gPg�1 for some
g 2 G.

In particular, all Sylow p-subgroups are conjugate.

Lemma 7.4. (i) Let P be a Sylowp-subgroup ofG and suppose P/G. Then P is the only Sylowp-subgroup
of G.

(ii) In any finite group G, P is the only Sylow p-subgroup of NG�P�.

Theorem 7.5. (Sylow’s Third Theorem) Let P be a Sylow p-subgroup of G. Then the number of Sylow p-
subgroups of G is �G : NG�P��. Further, �G : NG�P�� � 1 �mod p�.

Theorem 7.6. (Cauchy’s Theorem) Let p divide jGj. Then G contains an element of order p.

Corollary 7.7. If p divides jGj then G has a subgroup of order p.

Week 8 — Lecture 19 — Thursday 6th May 2010.

7.3. Examples. We consider the structure of groups of order pq, where p and q are distinct odd primes,
groups of order 2p where p is prime and groups of order less than or equal to 15.

8. Rings

8.1. Definitions.

Definition 8.1. A ring is a set R with two binary operations �; � such that

(i) �R;�� is an abelian group
(ii) a�bc� � �ab�c for all a;b; c 2 R (Associative law for multiplication)
(iii) a�b � c� � ab � ac and �a� b�c � ac � bc for all a;b; c 2 R (Distributive laws).

Notes:

(1) As usual, we often omit � and write ab instead of a � b.
(2) �R; �� is not necessarily a group – why?
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(3) The additive identity of �R;�� is denoted 0. Thus a� 0 � 0� a � a for all a 2 R.
(4) The additive inverse of �R;�� is denoted �a. Thus a� ��a� � ��a�� a � 0 for all a 2 R.
(5) R is called a commutative ring if ab � ba for all a;b 2 R.
(6) R is called a ring with identity if there is an element 1 6� 0 in R such that 1:a � a:1 � a for all a 2 R.

8.2. Examples of rings.

(1) Z;Q;R;C are rings (commutative rings with identity).
(2) For any integer n � 1, Zn is a ring under addition and multiplication �mod n�.
(3) For any integer n � 1, if R is a ring, then the set of n � n matrices Mn�R� is a ring under the usual

operations.
(4) The Gaussian integers Z�i� � fa� bi j a;b 2 Zg.
(5) The set Q�

p
2� � fa� b

p
2 j a;b 2 Qg.

(6) The ring of real quaternions

R�H� � fa� bi� cj � dk j a;b; c; d 2 R; i2 � j2 � k2 � �1; ij � k; jk � i; ki � jg:

Week 9 — Lecture 20 — Monday 10th May 2010.

8.3. Properties of rings.

(1) 0:a � a:0 � 0 for all a 2 R.
(2) a��b� � ��a�b � �ab for all a;b 2 R.
(3) ��a���b� � ab for all a;b 2 R.

8.4. Homomorphisms.

Definition 8.2. Let R and R0 be rings. A function � : R ! R0 is a ring homomorphism if

(i) ��a� b� � ��a����b�
(ii) ��ab� � ��a���b�

for all a;b 2 R.

The homomorphism � is called an isomorphism if it is 1� 1 and onto.

The kernel of � is ker � � fa 2 R j ��a� � 0g.

Note: The homomorphism � is 1� 1 if and only if ker � � f0g.

8.5. Subrings.

Definition 8.3. A subring S of a ring R is a subset of R that is itself a ring.

Thus S is a subring of R if �S;�� < �R;�� and if S is closed under multiplication.

In particular, if� : R ! R0 is a ring homomorphism then��R� and ker� are subrings of R0 and R respectively.

9. Integral Domains and Fields

9.1. Definitions.

Definition 9.1. Let R be a ring with identity 1. A unit of R is an element u that has a multiplicative inverse
u�1. So, uu�1 � u�1u � 1.

If every non-zero element of R is a unit then R is called a field when R is commutative, or a skewfield or division
ring when R is not commutative.
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Thus when R is a field, �R;�� and �R n f0g; �� are both abelian groups.

Definition 9.2. Let R be a ring. Non-zero elements a;b of R such that ab � 0 are called zero-divisors.

The ring Zn (n > 1) has no zero-divisors if and only if n is prime.

Definition 9.3. An integral domain is a commutative ring with identity which has no zero-divisors.

Examples:

(1) Z is an integral domain.
(2) If p is prime, Zp is an integral domain.
(3) If n is composite, Zn is not an integral domain.
(4) Every field is an integral domain.

Theorem 9.4. Every finite integral domain is a field.

Corollary 9.5. If p is a prime, then Zp is a field.

Week 9 — Lecture 21 — Tuesday 11th May 2010.

9.2. The field of quotients of an integral domain. Let D be an integral domain. Then we can construct a field
F containing D as follows:

Let
S � f�a; b� 2 D �D j b 6� 0g:

Define an equivalence relation on S by

�a; b� � �c; d� if ad � bc:
Let F be the set of equivalence classes under this relation:

F � f��a; b�� j a;b 2 D;b 6� 0g:

Define operations of addition and multiplication on F by

��a; b��� ��c; d�� � ��ad� bc; bd��
and

��a; b�� � ��c; d�� � ��ac; bd��:

Then F is a field under these operations and F contains an integral domain

D � f��a;1�� j a 2 Dg
which is isomorphic to D. We usually say that D � F .

The field F is called the field of quotients of D. This field is the smallest field containing D, and is unique up
to isomorphism.

10. Polynomials

10.1. Basic operations. Let R be a ring. We denote by R�x� the set of all polynomials in x with coefficients in
R. Here x is an ‘indeterminate’, not a variable or element of R.

Thus

R�x� �

8<:
1X
i�0

aixi � a0 � a1x � a2x2 � : : :
��� ai 2 R; only a finite number of ai non-zero

9=; :
The degree of the polynomial f�x� is the largest i such that ai 6� 0. It is conventional to say that the zero
polynomial 0 has degree �1.



15

10.1.1. Addition and multiplication of polynomials. If

f�x� � a0 � a1x � a2x2 � : : :
g�x� � b0 � b1x � b2x2 � : : :

then
f�x�� g�x� � �a0 � b0�� �a1 � b1�x � �a2 � b2�x2 � : : :

and
f�x�g�x� � d0 � d1x � d2x2 � : : :

where di �
Pi
j�0 ajbi�j . Note that with these definitions,

deg f�x�g�x� � deg f�x�� degg�x�

and
deg�f �x�� g�x�� �maxfdeg f�x�;degg�x�g:

Under these operations, R�x� is a ring.

If R is commutative, so is R�x�. If R has an identity 1, so has R�x�.

More generally, we can define the polynomial ring R�x1; x2; : : : ; xn� in n indeterminates x1; x2; : : : ; xn by

R�x1; x2; : : : ; xn� � �R�x1; x2; : : : ; xn�1���xn�:

10.2. Polynomials over an integral domain and field. If D is an integral domain, so is D�x� and hence so is
D�x1; x2; : : : ; xn�. In this case

deg f�x�g�x� � deg f�x�� degg�x�:

If F is a field, then F�x� is an integral domain but not a field.

Week 10 — Lecture 22 — Monday 17th May 2010.

10.2.1. The division algorithm.

Lemma 10.1 (Division algorithm for Z). Let m and n be integers with m 6� 0. Then there are unique integers
q and r such that

n � qm� r
and 0 � r < m.

Lemma 10.2 (Division algorithm for F�x�). Let F be a field and f�x�; g�x� be polynomials in F�x� with g�x� 6�
0. Then there are unique polynomials q�x� and r�x� in F�x� such that

f�x� � g�x�q�x�� r�x�
and deg r�x� < degg�x�.

Note that g�x� j f�x� if and only if r�x� � 0.

10.3. Polynomial functions. Let R be a ring and f�x� � a0 � a1x � a2x2 � � � � a polynomial over R. Then
the function f : R ! R given by f�r� � a0 �a1r �a2r 2 � � � � is called the polynomial function associated to
f .

The set P�R� of all polynomial functions over R is a ring under the operations �f � g��r� � f�r�� g�r� and
�fg��r� � f�r�:g�r�. It is then easy to show that

f � g � f � g; f g � fg:
If R is a commutative ring with identity then so is P�R�, but note that P�R� is not necessarily isomorphic to
R�x�.
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10.3.1. Zeros of polynomials. Let F be a field.

Definition 10.3. An element a 2 F is a zero of f�x� 2 F�x� if f�a� � 0.

Theorem 10.4 (Factor Theorem). The element a 2 F is a zero of f�x� 2 F�x� if and only if x � a j f�x�.

Corollary 10.5. A polynomial of degree n over a field F has at most n zeros in F .

Week 10 — Lecture 23 — Tuesday 18th May 2010.

Definition 10.6. A non-constant polynomial f�x� 2 F�x� is irreducible over F if

f�x� 6� g�x�h�x� for any polynomials g�x�;h�x� of degree less than f�x�.

11. Ideals

11.1. Introduction.

Definition 11.1. A subring I of a ring R is called an ideal of R if for all r 2 R and i 2 I we have ir 2 I and
ri 2 I.

11.2. The Factor Ring.

Theorem 11.2 (The Factor Ring). Let I be an ideal of the ring R. Then the set R=I of all cosets of I in R is a ring
under the operations

�r � I�� �s � I� � �r � s�� I
�r � I�:�s � I� � rs � I:

If R is a commutative ring, or a ring with identity, then so is R=I.

Lemma 11.3. Let � : R ! S be a ring homomorphism. Then ker � is an ideal of R.

Theorem 11.4 (Homomorphism Theorem). If � : R ! S is a ring homomorphism then

R=ker � ’ ��R�:

Week 10 — Lecture 24 — Thursday 20th May 2010.

Lemma 11.5. If I and J are ideals of R then so are I � J and I \ J.

Theorem 11.6 (Isomorphism Theorem).

(i) Let I be an ideal of R. Then there is a 1�1 correspondence between subrings S of R containing I and
subrings S=I of R=I. Here S is an ideal of R if and only if S=I is an ideal of R=I.

(ii) Let I � J � R with I and J ideals of R. Then

R=J ’ �R=I�=�J=I�:
(iii) Let I and J be ideals of R. Then

�I � J�=J ’ I=�I \ J�:

11.3. Ideals in commutative rings with identity. Let R be a commutative ring with identity.

Definition 11.7. An ideal of the form hai � far j r 2 Rg is called a principal ideal of R.

An ideal M of R is called a maximal ideal if there is no ideal I of R such that M � I � R.

Theorem 11.8. Let R be a commutative ring with identity. Then M is a maximal ideal of R if and only if R=M
is a field.
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12. Factorization in Integral Domains

12.1. Irreducibles and associates.

Definition 12.1. An element c of an integral domain, not zero or a unit, is called
irreducible if, whenever c � df , one of d or f is a unit.

Elements c and d are called associates if c � du for a unit u.

12.2. Euclidean domains.

Definition 12.2. A Euclidean domain is an integral domain D together with a function � : D� ! N satisfying

(i) ��a� � ��ab� for all non-zero a;b 2 D
(ii) for all a;b 2 D; b 6� 0 there exist q; r 2 D such that

a � bq � r
with either r � 0 or ��r� < ��b�:

The function � is called a Euclidean valuation.

Examples:

(1) Z with ��n� � jnj.
(2) F�x� with ��f�x�� � deg f�x�, where F is a field.

Week 11 — Lecture 25 — Monday 24th May 2010.

Note 12.1. (a) If a 2 D� then ��1� � ��a�.
(b) If u 2 D� then ��u� � ��1� if and only if u is a unit.

12.3. The integral domains Z�
p
d�.

12.3.1. The Gaussian integers. This is the integral domain

Z�i� � fm�ni jm;n 2 Zg
with ��m�ni� �m2 �n2 and i � �1 as usual. Then � is a Euclidean valuation.

12.3.2. The general case. If d 2 Z we define

Z�
p
d� � fa� b

p
d j a;b 2 Zg:

This is an integral domain, a subdomain of C. We normally take d 6� 0;1 and d squarefree.

The norm in Z�
p
d� is the function N : Z�

p
d�! N given by

N�a� b
p
d� � ja2 � db2j:

Theorem 12.3. In Z�
p
d�,

(i) N�x� � 0 if and only if x � 0
(ii) for all x;y 2 Z�

p
d�, N�xy� � N�x�N�y�

(iii) x is a unit if and only if N�x� � 1
(iv) if N�x� is prime, then x is irreducible in Z�

p
d�.

Note that N is in some cases, but not in all cases, a Euclidean valuation, so for some d, Z�
p
d� is a Euclidean

domain with valuation N . There are also cases where Z�
p
d� is a Euclidean domain with a different valuation.
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12.4. Principal ideal domains.

Definition 12.4. An integral domain D is a principal ideal domain (PID) if every ideal of D is principal.

Theorem 12.5. Every Euclidean domain is a PID.

Examples:

(1) Z is an ED and hence a PID.
(2) If F is a field, F�x� is an ED, and hence a PID.
(3) The Gaussian integers Z�i� is a PID.
(4) The domain Z�x� is not a PID. (Consider the ideal h2; xi � 2Z�x�� xZ�x�.)

Week 11 — Lecture 26 — Tuesday 25th May 2010.

13. Unique Factorization Domains

13.1. Definitions.

Definition 13.1. An integral domain D is called a unique factorization domain (UFD) if for every a 2 D, not
zero or a unit,

(i) a � c1c2 : : : cn for irreducibles ci
(ii) if a � c1c2 : : : cn � d1d2 : : : dm with ci; dj all irreducible then n �m and the di can be renumbered
such that each ci is an associate of di.

13.2. Irreducibility tests for polynomials.

Lemma 13.2. Let F be a field. If f�x� 2 F�x� has degree 2 or 3 then f�x� is reducible over F if and only if
f�x� has a zero in F .

Theorem 13.3 (Eisenstein’s criterion). Let f�x� � a0 � a1x � : : :� anxn 2 Z�x�.
Suppose that there is a prime p such that

(i) p 6 jan
(ii) pjai for i � 0;1; : : : ; n� 1
(iii) p2 6 ja0:

Then apart from a constant factor f�x� is irreducible over Z.

13.3. Irreducibles and primes.

Definition 13.4. Let a;b elements of an integral domain D. If a � 0 we say that a divides b (a j b) if b � ac
for some c 2 D.

Lemma 13.5. Let D be an integral domain. Then

(a) a j b if and only if hai � hbi.
(b) hai � D if and only if a is a unit.
(c) hai � hbi if and only if a and b are associates.

Definition 13.6. An element p of an integral domain D, not zero or a unit, is called prime if whenever pjab
for a;b 2 D, either pja or pjb.

Week 12 — Lecture 27 — Monday 31st May 2010.

Lemma 13.7. Every prime in an integral domain is irreducible.

Theorem 13.8. Let D be an integral domain. Then D is a UFD if and only if
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(i) for every a 2 D, not zero or a unit, a � c1c2 : : : cn for irreducibles ci
(ii) every irreducible in D is prime.

Theorem 13.9. Every PID is a UFD.

Week 12 — Lecture 28 — Tuesday 1st June 2010.

Lemma 13.10. LetD be a PID and let a1; a2; a3; : : : be a sequence of elements ofD such that for each i; ai�1jai.
Then for some N , an is an associate of aN for all n > N .

13.4. Polynomial rings as UFDs.

Theorem 13.11. If D is a UFD then so is D�x�.

Corollary 13.12. If D is a UFD so also is D�x1; : : : ; xn�.

Hence, in particular, Z�x�; F�x;y�; F�x;y; z� are UFDs.

13.5. Relationships between classes of rings.

ED � PID � UFD � ID � Commutative rings with identity:

Examples:

EDs Z; F�x�;Z�i�;Z�
p

2�
PIDs which are not EDs fm2 �

n
2

p
�19 jm;n 2 Zg

UFDs which are not PIDs Z�x�;Z�x;y�; F�x;y�
IDs which are not UFDs Z�

p
�5�;Z�

p
10�

Commutative rings with 1 which are not IDs Zm; m composite.


