Groups and Rings III

Page 2 of 4

- 1. Give a True (T) or False (F) answer to each of the following statements. In each case give a *short* reason for your answer.
 - (i) Every group of order 13 is cyclic.
 - (ii) Any two elements of S_5 of the same order are conjugate.
 - (iii) C_{15} has two composition series.
 - (iv) If |G| = 36 and |H| = 7 then any homomorphism $f \colon G \to H$ has $\ker(f) = G$.
 - (v) $C_3 \times C_9 \cong C_{27}$.
 - (vi) A finite group can have 100 Sylow 5-subgroups.
- (vii) Z₆ has zero-divisors.
 - (viii) A polynomial of degree 3 in $\mathbb{Z}_7[x]$ has at most three zeros.

[24 marks]

- 2. Let G be a group.
 - (a) Define the center of G and the conjugacy class [x] of an element $x \in G$.
 - (b) Show that $x \in Z(G)$ if and only if ||x|| = 1.
 - (c) Show that if G/Z(G) is a cyclic group then G is abelian.
 - (d) Let G have order pq, where p and q are distinct primes.
 Use part (c) of this question to show that if G is not abelian then Z(G) is trivial.
 To what group is G isomorphic if G is abelian?

[13 marks]

3. (a) Find the torsion invariants and the rank of the abelian group

$$G = \langle A, B, G | a^3b^9c^{-3} = b^{12}c^{-6} = a^9b^3c^3 = e \rangle.$$

(b) Determine all abelian groups of order 300, giving the prime power decomposition and torsion invariants for each group.

[10 marks]

Groups and Rings III

Page 2 of 3

- 1. State whether each of the following claims is true or false. In each case give a $short\ reason$ to justify your answer.
 - (a) The alternating group A_6 contains no element of order 6.
 - (b) The groups $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) are isomorphic. (Here \mathbb{R}^+ denotes the set of positive real numbers.)
 - (c) The group $C_2 \times C_8$ contains 8 elements of order 8.
 - (d) The groups $C_2 \times C_9$ and C_{18} are isomorphic
- (e) The ring $M_2(\mathbb{R})$ has no zero divisors.
 - (f) A polynomial of degree 4 in $\mathbb{Z}_{13}[x]$ has at most four zeros.
- (g) If I is an integral domain then the ring I[x] of polynomials is isomorphic to the ring $\mathcal{P}(I)$ of polynomial functions over I.
- (h) In an integral domain I, every prime is irreducible.

[24 marks]

2. (a) Find the torsion invariants and the rank of the abelian group

$$G = \langle a, b, c \mid a^3b^2 - a^9b^6c^{12} = bc^6 = e \rangle$$

(b) Determine all abelian groups of order 675, giving the prime power decomposition and torsion invariants for each group.

[12 marks]

3. (a) Let G be a finite group and $x \in G$. Define the *conjugacy class* [x] and the centralizer $C_G(x)$ of x. Show directly (i.e., without using the Orbit-Stabilizer Theorem,) that

$$|[x]| = (G: C_G(x)).$$

- (b) Consider the groups S_4 and A_4 and let $x=(1\,2\,3)$, which is an element of both groups.
 - (i) Find the conjugacy class and the centralizer of x in S_4 .
 - (ii) Find the centralizer of x in A_4 . Hence find the number of elements in the conjugacy class of x in A_4 .

[13 marks]