Examination in School of Mathematical Sciences
Semester 1, 2009

004094 Groups and Rings III
PURE MTH 3007

Official Reading Time: 10 mins
Writing Time: 180 mins
Total Duration: 190 mins

NUMBER OF QUESTIONS: 7 TOTAL MARKS: 100

Instructions

• Attempt all questions.
• Begin each answer on a new page.
• Examination materials must not be removed from the examination room.

Materials

• 1 Blue book is provided.
• Calculators are not permitted.

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.
1. Give a True (T) or False (F) answer to each of the following statements. In each case give a short reason for your answer.

(i) Every group of order 13 is cyclic.
(ii) Any two elements of S_5 of the same order are conjugate.
(iii) C_{15} has two composition series.
(iv) If $|G| = 36$ and $|H| = 7$ then any homomorphism $f : G \to H$ has $\ker(f) = G$.
(v) $C_3 \times C_9 \cong C_{27}$.
(vi) A finite group can have 100 Sylow 5-subgroups.
(vii) \mathbb{Z}_6 has zero-divisors.
(viii) A polynomial of degree 3 in $\mathbb{Z}_7[x]$ has at most three zeros.

[24 marks]

2. Let G be a group.

(a) Define the center of G and the conjugacy class $[x]$ of an element $x \in G$.
(b) Show that $x \in Z(G)$ if and only if $|[x]| = 1$.
(c) Show that if $G/Z(G)$ is a cyclic group then G is abelian.
(d) Let G have order pq, where p and q are distinct primes.
 Use part (c) of this question to show that if G is not abelian then $Z(G)$ is trivial.
 To what group is G isomorphic if G is abelian?

[13 marks]

3. (a) Find the torsion invariants and the rank of the abelian group

\[G = \langle A, B, C \mid a^3 b^9 c^{-3} = b^{12} c^{-6} = a^9 b^3 c^3 = e \rangle. \]

(b) Determine all abelian groups of order 300, giving the prime power decomposition and torsion invariants for each group.

[10 marks]

Please turn over for page 3
4. (a) Let G be a finite group acting on a set X.
 (i) Define what is meant by the *orbit* and *stabilizer subgroup* of an element.
 (ii) State the Orbit-Stabilizer Theorem.
 (iii) Let r be the number of orbits of G on X and for each $g \in G$ let
 $\quad X_g = \{ x \in X \mid gx = x \}$.
 State Burnside’s Theorem which gives a formula for r in terms of the X_g.

 (b) We wish to paint each edge of a triangle with one of n different coloured paints. We are allowed to paint adjacent edges with the same coloured paint. Two paintings are considered to be the same if we can act by a symmetry of the triangle (i.e an element of S_3) until they look the same. Use Burnside’s Theorem to give an expression for the number of different paintings.

 [13 marks]

5. (a) Define a Sylow p-subgroup of a finite group G.
 (b) State Sylow’s three theorems on the existence, conjugacy and number of Sylow p-subgroups of a finite group G.
 (c) If G has exactly one Sylow p-subgroup P explain why P is normal in G.
 (d) Assume that G has order 77 and show that $G \cong C_{77}$.

 [14 marks]

6. (a) Define what it means for a ring R to be:
 (i) an *integral domain*
 (ii) a *field*.
 If you need them define the notions of *unit* and *zero-divisor*.
 (b) Give examples of a commutative ring with identity which is not an integral domain and an integral domain which is not a field.
 (c) Give the definition of an *ideal* and a *maximal ideal* of a ring R.
 (d) Show that the only ideals in a field F are 0 and F.

 [13 marks]
7. Consider the integral domain \(\mathbb{Z}(\sqrt{-3}) \) with norm
\[N(a + b\sqrt{-3}) = a^2 + 3b^2. \]
You may use the fact that \(N(\alpha \beta) = N(\alpha)N(\beta) \) in this question.
(a) Prove that if \(\alpha \in \mathbb{Z}(\sqrt{-3}) \) is a unit then \(N(\alpha) = 1 \). Hence find all units of \(\mathbb{Z}(\sqrt{-3}) \).
(b) Show that if \(N(c) = p \), \(p \) a prime in \(\mathbb{Z} \), then \(c \) is an irreducible element of \(\mathbb{Z}(\sqrt{-3}) \).
(c) Show that 2 is irreducible in \(\mathbb{Z}(\sqrt{-3}) \).
(d) Show that 2 is not a prime in \(\mathbb{Z}(\sqrt{-3}) \) by considering \((1 + \sqrt{-3})(1 - \sqrt{-3})\).

[13 marks]