Examination in School of Mathematical Sciences

Semester 1, 2009

004094 Groups and Rings III
 PURE MTH 3007

Official Reading Time:	10 mins
Writing Time:	$\underline{180 \mathrm{mins}}$
Total Duration:	190 mins

NUMBER OF QUESTIONS: 7 TOTAL MARKS: 100

Instructions

- Attempt all questions.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.

Materials

- 1 Blue book is provided
- Calculators are not permitted.

1. Give a True (T) or False (F) answer to each of the following statements. In each case give a short reason for your answer.
(i) Every group of order 13 is cyclic.
(ii) Any two elements of S_{5} of the same order are conjugate.
(iii) C_{15} has two composition series.
(iv) If $|G|=36$ and $|H|=7$ then any homomorphism $f: G \rightarrow H$ has $\operatorname{ker}(f)=G$.
(v) $C_{3} \times C_{9} \cong C_{27}$.
(vi) A finite group can have 100 Sylow 5 -subgroups.
(vii) \mathbb{Z}_{6} has zero-divisors.
(viii) A polynomial of degree 3 in $\mathbb{Z}_{7}[x]$ has at most three zeros.
2. Let G be a group.
(a) Define the center of G and the conjugacy class $[x]$ of an element $x \in G$.
(b) Show that $x \in Z(G)$ if and only if $|[x]|=1$.
(c) Show that if $G / Z(G)$ is a cyclic group then G is abelian.
(d) Let G have order $p q$, where p and q are distinct primes.

Use part (c) of this question to show that if G is not abelian then $Z(G)$ is trivial. To what group is G isomorphic if G is abelian ?
3. (a) Find the torsion invariants and the rank of the abelian group

$$
G=\left\langle A, B, C \mid a^{3} b^{9} c^{-3}=b^{12} c^{-6}=a^{9} b^{3} c^{3}=e\right\rangle .
$$

(b) Determine all abelian groups of order 300, giving the prime power decomposition and torsion invariants for each group.
4. (a) Let G be a finite group acting on a set X.
(i) Define what is meant by the orbit and stabilizer subgroup of an element.
(ii) State the Orbit-Stabilizer Theorem.
(iii) Let r be the number of orbits of G on X and for each $g \in G$ let

$$
X_{g}=\{x \in X \mid g x=x\} .
$$

State Burnside's Theorem which gives a formula for r in terms of the X_{g}.
(b) We wish to paint each edge of a triangle with one of n different coloured paints. We are allowed to paint adjacent edges with the same coloured paint. Two paintings are considered to be the same if we can act by a symmetry of the triangle (i.e an element of S_{3}) until they look the same. Use Burnside's Theorem to give an expression for the number of different paintings.
5. (a) Define a Sylow p-subgroup of a finite group G.
(b) State Sylow's three theorems on the existence, conjugacy and number of Sylow psubgroups of a finite group G.
(c) If G has exactly one Sylow p-subgroup P explain why P is normal in G.
(d) Assume that G has order 77 and show that $G \simeq C_{77}$.
6. (a) Define what it means for a ring R to be:
(i) an integral domain
(ii) a field.

If you need them define the notions of unit and zero-divisor.
(b) Give examples of a commutative ring with identity which is not an integral domain and an integral domain which is not a field.
(c) Give the definition of an ideal and a maximal ideal of a ring R.
(d) Show that the only ideals in a field F are 0 and F.
7. Consider the integral domain $\mathbb{Z}(\sqrt{-3})$ with norm

$$
N(a+b \sqrt{-3})=a^{2}+3 b^{2} .
$$

You may use the fact that $N(\alpha \beta)=N(\alpha) N(\beta)$ in this question.
(a) Prove that if $\alpha \in \mathbb{Z}(\sqrt{-3})$ is a unit then $N(\alpha)=1$. Hence find all units of $\mathbb{Z}(\sqrt{-3})$.
(b) Show that if $N(c)=p, p$ a prime in \mathbb{Z}, then c is an irreducible element of $\mathbb{Z}(\sqrt{-3})$.
(c) Show that 2 is irreducible in $\mathbb{Z}(\sqrt{-3})$.
(d) Show that 2 is not a prime in $\mathbb{Z}(\sqrt{-3})$ by considering $(1+\sqrt{-3})(1-\sqrt{-3})$.
[13 marks]

