School of Mathematical Sciences PURE MTH 3007
Groups and Rings III, Semester 1, 2010

Brief comments on the 2009 examination

NB: These are brief comments NOT examples of the kinds of solutions I expect you to write!

Q1. (i) T, (ii) F (iii) T (iv) T (v) F (vi) F (vii) T (viii) T
Q2. (a) Lectures (b) Lectures (c) Lectures (d) From Lagrange $|Z(G)|$ is $1, p, q$ or $p q$. As G is not abelian $|Z(G)| \neq p q$. If $|Z(G)|=p$ then $|G / Z(G)|=q$ so $G / Z(G)$ is cyclic so G is abelian a contradiction. Similar if $|Z(G)|=q$ so $|Z(G)|=1$. If G is abelian then it is finitely generated and abelian so isomorphic to $C_{p} \times C_{q} \cong C_{p q}$.

Q3. (a) Torsion invariants 3 and 6, rank is 1 . (b) I'll list the torsion invariants you can deduce the decomposition into cyclic groups. 10,30. 5, 60. 2, 150. 300.

Q4. (a) Lectures (b) CE 4, Q 5
Q5 (a) Lectures (b) Lectures (c) Lectures. (d) $|G|=7 \times 11$ and 11 is not congruent to 1 modulo 7 so proceed as in lectures.

Q6. (a) Lectures (b) \mathbb{Z}_{6} and \mathbb{Z}. (c) Lectures. (d) Lectures
Q7. (a) Lectures and then note that for a unit we must have $a^{2}+3 b^{2}=1$ whose only solutions are $a= \pm 1$ with $b=0$. So only units are ± 1. (b) Lectures. (c) $N(2)=4$. If $2=x y$ then $4=N(2)=N(x) N(y)$. As we don't want either of x or y to be a unit must have $N(x)=N(y)=2$. But $a^{2}+3 b^{2}=2$ is not possible to solve for a and b integers. So 2 is irreducible. (d) We have $(1+\sqrt{-3})(1-\sqrt{-3})=4$ is divisible by 2 . However 2 does not divide either factor as the result would be $1 / 2 \pm 1 / 2 \sqrt{-3} \notin \mathbb{Z}(\sqrt{-3})$.

