Groups and Rings III 2010

Tutorial Exercise 6.

Please try before the tutorial on Tuesday 1st June.

1. Find all zeros, and hence factorise the following polynomials:
(a) $f(x)=x^{3}-x^{2}+2 x-2$ in $\mathbb{Z}_{3}[x]$;
(b) $g(x)=x^{4}-4 x^{3}+x^{2}-4 x$ in $\mathbb{Z}_{5}[x]$;
(c) $h(x)=x^{3}+2 x^{2}+2 x+1$ in $\mathbb{Z}_{7}[x]$;
2. Let F be a field and $a \in F$.
(a) Show that $\phi: F[x] \rightarrow F$ defined by $\phi(f(x))=\bar{f}(a)$ is a ring homomorphism.
(b) Use the Factor Theorem to show that $\operatorname{ker}(\phi)=\langle x-a\rangle$.
(c) Deduce that $F[x] /\langle x-a\rangle \cong F$.
3. Let $\{0\} \neq I \subset \mathbb{Z}$ be an ideal.
(a) If n is any number in I show that $\langle n\rangle \subset I$.
(b) Show that I contains positive numbers.
(c) If n is the smallest positive number in I show that $\langle n\rangle=I$ using the Division Algorithm for integers.
(d) Conclude that every ideal in \mathbb{Z} is a principal ideal.
4. Let D be an integral domain. Show that
(a) $b=a r$ for some $r \in D$ if and only if $\langle a\rangle \supseteq\langle b\rangle$
(b) $\langle a\rangle=D$ if and only if a is a unit
(c) $\langle a\rangle=\langle b\rangle$ if and only if a and b are associates.
5. Let a and b be positive integers and let $\langle a, b\rangle$ be the ideal generated by a and b. Using the fact that every ideal in \mathbb{Z} is principal show that

$$
\langle a, b\rangle=\langle\operatorname{gcd}(a, b)\rangle
$$

Deduce that there exist integers m and n such that $m a+n b=\operatorname{gcd}(a, b)$ and if c is a common divisor of a and b then $c \mid \operatorname{gcd}(a, b)$.

