Groups and Rings III 2010

Tutorial Exercise 6.

Please try before the tutorial on Tuesday 1st June.

- 1. Find all zeros, and hence factorise the following polynomials:
- (a) $f(x) = x^3 x^2 + 2x 2$ in $\mathbb{Z}_3[x]$;
- (b) $g(x) = x^4 4x^3 + x^2 4x$ in $\mathbb{Z}_5[x]$;
- (c) $h(x) = x^3 + 2x^2 + 2x + 1$ in $\mathbb{Z}_7[x]$;
- 2. Let *F* be a field and $a \in F$.
- (a) Show that $\phi: F[x] \to F$ defined by $\phi(f(x)) = \overline{f}(a)$ is a ring homomorphism.
- (b) Use the Factor Theorem to show that $ker(\phi) = \langle x a \rangle$.
- (c) Deduce that $F[x]/\langle x a \rangle \cong F$.
- 3. Let $\{0\} \neq I \subset \mathbb{Z}$ be an ideal.
- (a) If *n* is any number in *I* show that $\langle n \rangle \subset I$.
- (b) Show that *I* contains positive numbers.
- (c) If *n* is the smallest positive number in *I* show that $\langle n \rangle = I$ using the Division Algorithm for integers.
- (d) Conclude that every ideal in \mathbb{Z} is a principal ideal.

4. Let *D* be an integral domain. Show that

- (a) b = ar for some $r \in D$ if and only if $\langle a \rangle \supseteq \langle b \rangle$
- (b) $\langle a \rangle = D$ if and only if *a* is a unit
- (c) $\langle a \rangle = \langle b \rangle$ if and only if *a* and *b* are associates.

5. Let *a* and *b* be positive integers and let (a, b) be the ideal generated by *a* and *b*. Using the fact that every ideal in \mathbb{Z} is principal show that

$$\langle a, b \rangle = \langle \gcd(a, b) \rangle.$$

Deduce that there exist integers *m* and *n* such that ma + nb = gcd(a, b) and if *c* is a common divisor of *a* and *b* then c | gcd(a, b).