Groups and Rings III 2010

Tutorial Exercise 2.

Please try before the tutorial on Tuesday 16th March.

1. Let $D = \left\{ \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \mid \alpha, \beta \in \mathbb{Z}_5^{\times}, \alpha \beta \neq 0 \right\}$; i.e. *D* is the subgroup of diagonal matrices of $GL(2, \mathbb{Z}_5^{\times})$.

- (a) Show that *D* is a subgroup.
- (b) Calculate |D| and show that D is abelian.
- (c) Is *D* cyclic? If *D* is cyclic find a generator; if not, find the smallest number of matrices *A*, *B*, *C*,... such that $D = \langle A, B, C, ... \rangle$.
- (d) Determine $|D \cap SL(2, \mathbb{Z}_5^{\times})|$.

2. If $c = (i_1, i_2, \dots, i_k) \in S_n$ find a decomposition of c into transpositions and hence show that c is even (odd) if and only if |c| is odd (even). (Hint: You can get away with k - 1 transpositions.)

3. Consider the following permutations in S_6 , the symmetric group on 6 letters.

- (a) Write each of σ and τ as a product of disjoint cycles and find their orders.
- (b) Write down σ^{-1} and find $\sigma^{-1}\tau$.
- (c) Is $\sigma^{-1}\tau$ an even or odd permutation?
- 4. Recall that $\mathbb{R}^{\times} = \mathbb{R} \{0\}$ and let $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\} \subset \mathbb{R}^{\times}$.
- (a) Show that (\mathbb{R}^+, \times) is a subgroup of $(\mathbb{R}^\times, \times)$.
- (b) Show that (\mathbb{R}^+, \times) is isomorphic to the group $(\mathbb{R}, +)$. (Hint: Think about log and exp.)
- (c) Explain why $(\mathbb{R}, +)$ is not isomorphic to $(\mathbb{R}^{\times}, \times)$. (Hint: Elements of order two.)
- (d) Is $(\mathbb{Q}, +)$ cyclic ?

5. Consider the Klein four-group V_4 which is group of symmetries of a rectangle given, as a subgroup of S_4 , as

$$V_4 = \{1, (13)(24), (12)(43), (14)(32)\}$$

Write down the multiplication tables of V_4 the group of symmetries of a rectangle and U_4 the group of fourth roots of unity. Are they isomorphic ? Justify your answer. [Hint: Think about orders of elements.]