Groups and Rings III 2010

Tutorial Exercise 2.

Please try before the tutorial on Tuesday 16th March.

1. Let $D=\left\{\left.\left[\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{Z}_{5}^{\times}, \alpha \beta \neq 0\right\}$; i.e. D is the subgroup of diagonal matrices of $G L\left(2, \mathbb{Z}_{5}^{\times}\right)$.
(a) Show that D is a subgroup.
(b) Calculate $|D|$ and show that D is abelian.
(c) Is D cyclic? If D is cyclic find a generator; if not, find the smallest number of matrices A, B, C, \ldots such that $D=\langle A, B, C, \ldots\rangle$.
(d) Determine $\left|D \cap S L\left(2, \mathbb{Z}_{5}^{\times}\right)\right|$.
2. If $c=\left(i_{1}, i_{2}, \cdots, i_{k}\right) \in S_{n}$ find a decomposition of c into transpositions and hence show that c is even (odd) if and only if $|c|$ is odd (even). (Hint: You can get away with $k-1$ transpositions.)
3. Consider the following permutations in S_{6}, the symmetric group on 6 letters.

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 4 & 2 & 6 & 5
\end{array}\right) \quad \tau=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 2 & 5 & 6 & 4
\end{array}\right) .
$$

(a) Write each of σ and τ as a product of disjoint cycles and find their orders.
(b) Write down σ^{-1} and find $\sigma^{-1} \tau$.
(c) Is $\sigma^{-1} \boldsymbol{\tau}$ an even or odd permutation?
4. Recall that $\mathbb{R}^{\times}=\mathbb{R}-\{0\}$ and let $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\} \subset \mathbb{R}^{\times}$.
(a) Show that $\left(\mathbb{R}^{+}, \times\right)$is a subgroup of $\left(\mathbb{R}^{\times}, \times\right)$.
(b) Show that $\left(\mathbb{R}^{+}, \times\right)$is isomorphic to the group $(\mathbb{R},+)$. (Hint: Think about log and exp.)
(c) Explain why $(\mathbb{R},+)$ is not isomorphic to $\left(\mathbb{R}^{\times}, \times\right)$. (Hint: Elements of order two.)
(d) Is $(\mathbb{Q},+)$ cyclic ?
5. Consider the Klein four-group V_{4} which is group of symmetries of a rectangle given, as a subgroup of S_{4}, as

$$
V_{4}=\{1,(13)(24),(12)(43),(14)(32)\}
$$

Write down the multiplication tables of V_{4} the group of symmetries of a rectangle and U_{4} the group of fourth roots of unity. Are they isomorphic? Justify your answer. [Hint: Think about orders of elements.]

