Groups and Rings III 2010
 Tutorial Exercise 1.

Please try before the tutorial on Thursday 4th March.

1. Let $a, b \in \mathbb{Z}^{+}$, that is a and b are positive integers and consider

$$
H=\{a m+b n \mid m, n \in \mathbb{Z}\}
$$

(a) Show that H is a subgroup of \mathbb{Z} and contains both a and b.
(b) From lectures we can deduce from (a) that H is cyclic. Let $H=\langle d\rangle$. Explain why we can assume $d\rangle 0$ without loss of generality.
(c) Show that $d=\operatorname{gcd}(a, b)$, that is d is the greatest common divisor of a and b or the largest integer dividing both a and b.
(d) Deduce that for any $a, b \in \mathbb{Z}^{+}$there exists $m, n \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=m a+n b$.
2. Consider the group

$$
U_{6}=\left\{z \in \mathbb{C} \mid z^{6}=1\right\}
$$

and let $\omega=\exp (\pi i / 3)$.
(a) Show that U_{6} is a cyclic subgroup of $\mathbb{C}^{\times}=\mathbb{C}-\{0\}$ generated by ω. What is the order of ω ?
(b) Write out the multiplication table of U_{6}.
(c) For each element $x \in U_{6}$ calculate the order $|x|$ and the subgroup $\langle x\rangle$.
(d) As discussed in lectures the subgroups in (c) are all the subgroups of U_{6}. Draw the subgroup lattice of U_{6}.
3. Let G be a group.
(a) Show that a non-empty subset $\varnothing \neq H \subset G$ is a subgroup if and only if for all $x, y \in H$ we have $x y^{-1} \in H$. Is \varnothing a subgroup?
(b) Show that if H and K are subgroups of G then $H \cap K$ is a subgroup of G.
4. Let G be a group.
(a) Show that for any $a, b, c \in G$ we have
(i) $\left|a^{-1}\right|=|a|$
(ii) $\left|b^{-1} a b\right|=|a|$
(iii) $|a b|=|b a|$
(iv) $|a b c|=|b c a|=|c a b|$

In each case also show that either both sides are finite or both sides are infinite.
(b) Show that if $|x|=2$ for all $x \neq e$ in G then G is abelian. (Hint: Consider $(a b)^{2}$.)

