Groups and Rings III 2010

Tutorial Exercise 1.

Please try before the tutorial on Thursday 4th March.

1. Let $a, b \in \mathbb{Z}^+$, that is a and b are positive integers and consider

$$H = \{am + bn \mid m, n \in \mathbb{Z}\}$$

- (a) Show that *H* is a subgroup of \mathbb{Z} and contains both *a* and *b*.
- (b) From lectures we can deduce from (a) that *H* is cyclic. Let $H = \langle d \rangle$. Explain why we can assume d > 0 without loss of generality.
- (c) Show that d = gcd(a, b), that is *d* is the greatest common divisor of *a* and *b* or the largest integer dividing both *a* and *b*.
- (d) Deduce that for any $a, b \in \mathbb{Z}^+$ there exists $m, n \in \mathbb{Z}$ such that gcd(a, b) = ma + nb.
- 2. Consider the group

$$U_6 = \{ z \in \mathbb{C} \mid z^6 = 1 \}$$

and let $\omega = \exp(\pi i/3)$.

- (a) Show that U_6 is a cyclic subgroup of $\mathbb{C}^{\times} = \mathbb{C} \{0\}$ generated by ω . What is the order of ω ?
- (b) Write out the multiplication table of U_6 .
- (c) For each element $x \in U_6$ calculate the order |x| and the subgroup $\langle x \rangle$.
- (d) As discussed in lectures the subgroups in (c) are all the subgroups of U_6 . Draw the subgroup lattice of U_6 .
- 3. Let *G* be a group.
- (a) Show that a non-empty subset $\emptyset \neq H \subset G$ is a subgroup if and only if for all $x, y \in H$ we have $xy^{-1} \in H$. Is \emptyset a subgroup?
- (b) Show that if *H* and *K* are subgroups of *G* then $H \cap K$ is a subgroup of *G*.

4. Let *G* be a group.

(a) Show that for any $a, b, c \in G$ we have

(i) $|a^{-1}| = |a|$ (ii) $|b^{-1}ab| = |a|$ (iii) |ab| = |ba| (iv) |abc| = |bca| = |cab|In each case also show that either both sides are finite or both sides are infinite.

(b) Show that if |x| = 2 for all $x \neq e$ in *G* then *G* is abelian. (Hint: Consider $(ab)^2$.)