1. Consider the ring of Gaussian Integers, \(\mathbb{Z}(i) = \{a + bi \mid a, b \in \mathbb{Z}\} \) with Euclidean valuation \(\delta(a + bi) = a^2 + b^2 \).

(a) For \(a = 1 + 2i, \ b = 3 - i \), find \(q, r \in \mathbb{Z}(i) \) such that \(a = bq + r \), with \(\delta(r) < \delta(b) \), where \(\delta \) is the Euclidean norm for \(\mathbb{Z}(i) \).

(b) For each of 2 and 3 either show that they are irreducible or factorise them into products of irreducibles in \(\mathbb{Z}(i) \).

2. Recall that that the set of all units \(G \) in a ring with identity is a group with operation the ring multiplication. For the ring \(\mathbb{Z}(\sqrt{2}) \) use this to show that the group of units is infinite. Hint: Find a unit using the fact that it has norm 1 and then show that it has infinite order in \(G \).

3. Consider the integral domain \(D = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \) with norm \(N(a + b\sqrt{-5}) = a^2 + 5b^2 \). You may assume that \(N(\alpha\beta) = N(\alpha)N(\beta) \) for all \(\alpha, \beta \in D \).

(a) Prove that \(\alpha \in D \) is a unit if and only if \(N(\alpha) = 1 \).

(b) Find all units of \(D \).

(c) Show that if \(N(\alpha) = 9 \), then \(\alpha \) is irreducible.

(d) By considering the product \((2 + \sqrt{-5})(2 - \sqrt{-5}) \), show that 3 is not prime in \(D \).

(e) Is \(D \) a unique factorization domain? Justify your answer. (Hint: In case we haven’t got to it by the time you do this in a UFD primes are the same things as irreducibles.)

(Exam 2008)

4. Consider the integral domain \(\mathbb{Z}(\sqrt{10}) = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\} \) with the norm \(N(a + b\sqrt{10}) = a^2 - 10b^2 \).

(a) Use the norm to describe the units of \(\mathbb{Z}(\sqrt{10}) \).

(b) By considering \(a^2 \mod 10 \) show that for any \(x \in \mathbb{Z}(\sqrt{10}) \) we have that \(N(x) \mod 10 \) can only be 0, 1, 4, 5, 6, 9.

(c) Using (b) show that 2, 3, 4 + \(\sqrt{10} \) and 4 - \(\sqrt{10} \) are irreducible in \(\mathbb{Z}(\sqrt{10}) \).

(d) Is \(\mathbb{Z}(\sqrt{10}) \) a unique factorization domain?