Groups and Rings III 2010

Class Exercise 5.

Please hand up solutions in the lecture on Thursday 27th May.

1. If R is a ring with identity show that the set of all units in R is a group under multiplication.
2. Consider the ring of real quaternions:

$$
\mathbb{R}(\mathbb{H})=\left\{x_{1}+x_{2} i+x_{3} j+x_{4} k \mid x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}
$$

We define the addition and multiplication by assuming everything is linear over the real numbers and using the usual rules of multiplications in the quaternion group. E.g. $(5+2 j)(i+3 k)=5 i+15 k+2 j i+2 j k=$ $(5+2) i+(15-2) k=7 i+13 k$ and $(1+3 j)+(7 i+2 j+k)=1+7 i+5 j+k$.
(a) If $x=x_{1}+x_{2} i+x_{3} j+x_{4} k$ define $\bar{x}=x_{1}-x_{2} i-x_{3} j-x_{4} k$ and show that $x \bar{x}=\|x\|^{2}$ where $\|x\|$ is the usual Euclidean length of a vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$.
(b) Deduce that any non-zero $x \in \mathbb{R}(\mathbb{H})$ is a unit.
(c) Deduce that $\mathbb{R}(\mathbb{H})$ is a skew-field.
3. Consider the set $\mathbb{Q}(\sqrt{7})=\{a+b \sqrt{7} \mid a, b \in \mathbb{Q}\} \subset \mathbb{Q}$.
(a) Show that $\mathbb{Q}(\sqrt{7})$ is a subring of \mathbb{Q}.
(b) Show that $\mathbb{Q}(\sqrt{7})$ is a field.
4. Complete the following table.

Ring	Commutative	Identity	Units	Zero Divisors	Field	Integral Domain
\mathbb{Z}	yes	1	± 1	none	no	yes
$\mathbb{Z}(i)$						
\mathbb{Z}_{4}						
\mathbb{Z}_{3}						
$\mathbb{Q}(\sqrt{7})$						
$\mathbb{R}(\mathbb{H})$						
$M_{2}(\mathbb{C})$						

Note:
$\mathbb{Z}(i)=\{a+b i \mid a, b \in \mathbb{Z}\}$ is the ring of Gaussian Integers, a subring of \mathbb{C}.
$\mathbb{Q}(\sqrt{7})=\{a+b \sqrt{7} \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R}.
$\mathbb{R}(\mathbb{H})$ see Question 2.
You don't have to prove everything. Just fill out the table.
5. Recall the construction in lectures of the field of quotients of an integral domain D which involved the set $S=\{(a, b) \mid a, b \in D, b \neq 0\}$.
(a) Show that the relation $(a, b) \simeq(c, d)$ if $a d=b c$ is an equivalence relation on S.
(b) Show that the addition

$$
[(a, b)]+[(\alpha, \beta)]=[(a \beta+b \alpha, b \beta)]
$$ is well-defined.

