Groups and Rings III 2010

Class Exercise 5.

Please hand up solutions in the lecture on Thursday 27th May.

- 1. If *R* is a ring with identity show that the set of all units in *R* is a group under multiplication.
- 2. Consider the ring of real quaternions:

$$\mathbb{R}(\mathbb{H}) = \{ x_1 + x_2 i + x_3 j + x_4 k \mid x_1, x_2, x_3, x_4 \in \mathbb{R} \}$$

We define the addition and multiplication by assuming everything is linear over the real numbers and using the usual rules of multiplications in the quaternion group. E.g. (5+2j)(i+3k) = 5i + 15k + 2ji + 2jk = (5+2)i + (15-2)k = 7i + 13k and (1+3j) + (7i+2j+k) = 1 + 7i + 5j + k.

- (a) If $x = x_1 + x_2i + x_3j + x_4k$ define $\bar{x} = x_1 x_2i x_3j x_4k$ and show that $x\bar{x} = ||x||^2$ where ||x|| is the usual Euclidean length of a vector $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$.
- (b) Deduce that any non-zero $x \in \mathbb{R}(\mathbb{H})$ is a unit.
- (c) Deduce that $\mathbb{R}(\mathbb{H})$ is a skew-field.
- 3. Consider the set $\mathbb{Q}(\sqrt{7}) = \{a + b\sqrt{7} \mid a, b \in \mathbb{Q}\} \subset \mathbb{Q}$.
- (a) Show that $\mathbb{Q}(\sqrt{7})$ is a subring of \mathbb{Q} .
- (b) Show that $\mathbb{Q}(\sqrt{7})$ is a field.
- 4. Complete the following table.

Ring	Commutative	Identity	Units	Zero	Field	Integral
				Divisors		Domain
Z	yes	1	±1	none	no	yes
$\mathbb{Z}(i)$						
\mathbb{Z}_4						
\mathbb{Z}_3						
$\mathbb{Q}(\sqrt{7})$						
$\mathbb{R}(\mathbb{H})$						
$M_2(\mathbb{C})$						

Note:

 $\mathbb{Z}(i) = \{a + bi \mid a, b \in \mathbb{Z}\}$ is the ring of Gaussian Integers, a subring of \mathbb{C} . $\mathbb{Q}(\sqrt{7}) = \{a + b\sqrt{7} \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R} . $\mathbb{R}(\mathbb{H})$ see Question 2. You don't have to prove everything. Just fill out the table.

5. Recall the construction in lectures of the field of quotients of an integral domain *D* which involved the set $S = \{(a, b) \mid a, b \in D, b \neq 0\}$.

- (a) Show that the relation $(a, b) \simeq (c, d)$ if ad = bc is an equivalence relation on *S*.
- (b) Show that the addition

$$[(a,b)] + [(\alpha,\beta)] = [(a\beta + b\alpha, b\beta)]$$

is well-defined.