Groups and Rings III 2010

Class Exercise 4.

Please hand up solutions in the lecture on Thursday 13th May.

1. Consider the group $U(1)=\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}$. Identify the orbits of the action of $U(1)$ on \mathbb{C} defined by $(u, w) \mapsto u w$ for $u \in U(1)$ and $w \in \mathbb{C}$. Find $S_{U(1)}(0)$ and $S_{U(1)}(1+i \sqrt{2})$.
2. Let G act on X.
(a) Show that $S_{G}(x)$ is a subgroup of G.
(b) Show that $S_{G}(g x)=g S_{G}(x) g^{-1}$.
3. Let a finite group G act on a finite set X. We say the action is free if for every $x \in X$ the only g satisfying $g x=x$ is $g=e$.
(a) Show that if the action is free then $S_{G}(x)=\{e\}$ for all $x \in X$.
(b) Show that if the action is free then $X_{g}=\varnothing$ for all $g \neq e$.
(c) Use Burnside's theorem to show that if G acts freely on X then the number of orbits is $|X| /|G|$.
4. Let $H<G$ be finite groups.
(a) Define a function $H \times G \rightarrow G$ by $(h, g) \mapsto h \star g=g h^{-1}$. Show that this is a free action of H on G.
(b) Show that the orbits of this action of H on G are the left cosets of H.
(c) Use Burnside's theorem or the previous question to deduce Lagrange's theorem that the number of left cosets of H in G is $|G| /|H|$.
5. We wish to paint each edge of a triangle with one of n different coloured paints. We are allowed to paint adjacent edges with the same coloured paint. Two paintings are considered to be the same if we can act by a symmetry of the triangle (i.e an element of S_{3}) until they look the same. Use Burnside's Theorem to show that the number of different paintings is

$$
\frac{n^{3}+3 n^{2}+2 n}{6}
$$

