Groups and Rings III 2010

Class Exercise 3.

Please hand up solutions in the lecture on Thursday 22nd April .

1. Find the commutator subgroup of the quaternion group \mathbb{H}. Verify that it is normal.
2. Let H and K be groups and define a binary operation

$$
\begin{aligned}
H \times K \times H \times K & \rightarrow H \times K \\
\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right) & \mapsto\left(h_{1} h_{2}, k_{1} k_{2}\right)
\end{aligned}
$$

(a) Show that this binary operation makes $H \times K$ into a group.
(b) Show that $H_{0}=\{(h, e) \mid h \in H\}$ is a subgroup of $H \times K$.
(c) Show that the map $\iota_{H}: H \rightarrow H \times K$ defined by $\iota_{H}(h)=(h, e)$ is a one-to-one homomorphism with image H_{0}.
(d) Show that the map $\pi_{K}: H \times K \rightarrow K$ defined by $\pi_{K}((h, k))=k$ is an onto homomorphism with kernel H_{0}.
3. If m and n are integers denote the least common multiple of m and n by $\operatorname{lcm}(m, n)$ and the greatest common divisor of m and n by $\operatorname{gcd}(m, n)$. Note that $\operatorname{lcm}(m, n) \operatorname{gcd}(m, n)=m n$.
(a) If $(h, k) \in H \times K$ show that $|(h, k)|=\operatorname{lcm}(|h|,|k|)$.
(b) If $(m, n) \neq 1$ show that $C_{m} \times C_{n} \neq C_{m n}$.
(c) If $(m, n)=1$ show that $C_{m} \times C_{n} \simeq C_{m n}$.
4. Let $U_{1}=\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}<\mathbb{C}^{\times}$and $\mathbb{R}_{>0}=\left\{x \in \mathbb{R}^{\times} \mid x>0\right\}$. Show that:
(a) $\mathbb{C}^{\times} \simeq U_{1} \times \mathbb{R}_{>0}$. (Hint: polar decomposition, i.e $z=r \exp (i \theta)$)
(b) $\mathbb{R}^{\times} \simeq \mathbb{Z}_{2} \times \mathbb{R}_{>0}$.

