Groups and Rings III 2010

Class Exercise 3.

Please hand up solutions in the lecture on Thursday 22nd April.

1. Find the commutator subgroup of the quaternion group \(H \). Verify that it is normal.

2. Let \(H \) and \(K \) be groups and define a binary operation

\[
H \times K \times H \times K \to H \times K
\]

\[
((h_1,k_1)(h_2,k_2)) \to (h_1 h_2, k_1 k_2)
\]

(a) Show that this binary operation makes \(H \times K \) into a group.

(b) Show that \(H_0 = \{(h,e) \mid h \in H\} \) is a subgroup of \(H \times K \).

(c) Show that the map \(\iota_H: H \to H \times K \) defined by \(\iota_H(h) = (h,e) \) is a one-to-one homomorphism with image \(H_0 \).

(d) Show that the map \(\pi_K: H \times K \to K \) defined by \(\pi_K((h,k)) = k \) is an onto homomorphism with kernel \(H_0 \).

3. If \(m \) and \(n \) are integers denote the least common multiple of \(m \) and \(n \) by \(\text{lcm}(m,n) \) and the greatest common divisor of \(m \) and \(n \) by \(\text{gcd}(m,n) \). Note that \(\text{lcm}(m,n) \text{gcd}(m,n) = mn \).

(a) If \((h,k) \in H \times K \) show that \(|(h,k)| = \text{lcm}(|h|,|k|) \).

(b) If \((m,n) \neq 1 \) show that \(C_m \times C_n \not\cong C_{mn} \).

(c) If \((m,n) = 1 \) show that \(C_m \times C_n \cong C_{mn} \).

4. Let \(U_1 = \{z \in \mathbb{C}^\times \mid |z| = 1\} \times \mathbb{R}_>0 \) and \(\mathbb{R}_\geq = \{x \in \mathbb{R}^\times \mid x > 0\} \). Show that:

(a) \(\mathbb{C}^\times \cong U_1 \times \mathbb{R}_\geq \). (Hint: polar decomposition, i.e \(z = r \exp(i\theta) \))

(b) \(\mathbb{R}_\geq \cong \mathbb{Z}_2 \times \mathbb{R}_\geq \).