Groups and Rings III 2010

Class Exercise 3.

Please hand up solutions in the lecture on Thursday 22nd April .

- 1. Find the commutator subgroup of the quaternion group \mathbb{H} . Verify that it is normal.
- 2. Let *H* and *K* be groups and define a binary operation

$$H \times K \times H \times K \to H \times K$$
$$((h_1, k_1)(h_2, k_2)) \mapsto (h_1 h_2, k_1 k_2)$$

- (a) Show that this binary operation makes $H \times K$ into a group.
- (b) Show that $H_0 = \{(h, e) \mid h \in H\}$ is a subgroup of $H \times K$.
- (c) Show that the map $\iota_H: H \to H \times K$ defined by $\iota_H(h) = (h, e)$ is a one-to-one homomorphism with image H_0 .
- (d) Show that the map $\pi_K: H \times K \to K$ defined by $\pi_K((h, k)) = k$ is an onto homomorphism with kernel H_0 .

3. If *m* and *n* are integers denote the least common multiple of *m* and *n* by lcm(m, n) and the greatest common divisor of *m* and *n* by gcd(m, n). Note that lcm(m, n) gcd(m, n) = mn.

- (a) If $(h, k) \in H \times K$ show that |(h, k)| = lcm(|h|, |k|).
- (b) If $(m, n) \neq 1$ show that $C_m \times C_n \neq C_{mn}$.
- (c) If (m, n) = 1 show that $C_m \times C_n \simeq C_{mn}$.

4. Let $U_1 = \{z \in \mathbb{C}^{\times} \mid |z| = 1\} < \mathbb{C}^{\times}$ and $\mathbb{R}_{>0} = \{x \in \mathbb{R}^{\times} \mid x > 0\}$. Show that:

- (a) $\mathbb{C}^{\times} \simeq U_1 \times \mathbb{R}_{>0}$. (Hint: polar decomposition, i.e $z = r \exp(i\theta)$)
- (b) $\mathbb{R}^{\times} \simeq \mathbb{Z}_2 \times \mathbb{R}_{>0}$.